Di Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612472/publications.pdf

Version: 2024-02-01

36	3,279	20	36
papers	citations	h-index	g-index
36	36	36	4134 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Synthesis of Asymmetric Perylene Diimide Acceptors and Their Optoelectronic Properties Studies. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
2	Promoting the photovoltaic performance and stability of organic solar cells by imidazole-doped PEDOT:PSS. Journal of Materials Science: Materials in Electronics, 2022, 33, 12083-12092.	1.1	2
3	Boosting the Photovoltaic Performance and Thermal Stability of Organic Solar Cells via an Insulating Fluoropolymer Additive. ChemPlusChem, 2022, 87, e202200045.	1.3	1
4	Structural symmetry-breaking of a perylene diimide acceptor at the N-position for enhanced photovoltaic performance. New Journal of Chemistry, 2022, 46, 9851-9857.	1.4	7
5	Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. Journal of Physical Chemistry B, 2022, 126, 3758-3767.	1.2	8
6	Asymmetrical and symmetrical naphthalene monoimide fused perylene diimide acceptors for organic solar cells. Tetrahedron, 2022, , 132818.	1.0	1
7	Femtosecond Laser-Assisted Device Engineering: Toward Organic Field-Effect Transistor-Based High-Performance Gas Sensors. ACS Applied Materials & English (1988) (1988) (1988) (1988) (1988) (1988) (1988)	4.0	6
8	Tetraphenylethylene vs triphenylethylene core-based perylene diimide acceptor for non-fullerene organic solar cells. Dyes and Pigments, 2021, 184, 108813.	2.0	11
9	Molecular Regulation on Carbonyl-Based Organic Cathodes: Toward High-Rate and Long-Lifespan Potassium–Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16396-16406.	4.0	26
10	PDI hexamer based on combination of direct and indirect linkage manners for nonâ€fullerene organic solar cells. Chemistry - an Asian Journal, 2021, 16, 3767-3773.	1.7	3
11	Synthesis and characterization of a BN-embedded nine-ring fused heteroaromatics with dual channel detection of fluoride anions. Dyes and Pigments, 2021, 194, 109648.	2.0	3
12	A sensitive and selective fluorescence probe for the detection of superoxide radical anion in vivo based on a protection-deprotection process. Dyes and Pigments, 2021, 194, 109614.	2.0	7
13	Unfused vs fused thienoazacoronene-cored perylene diimide oligomer based acceptors for non-fullerene organic solar cells. Dyes and Pigments, 2021, 196, 109833.	2.0	6
14	A perylene diimide electron acceptor with a triphenylamine core: promoting photovoltaic performance <i>via</i> hot spin-coating. Journal of Materials Chemistry C, 2020, 8, 2135-2141.	2.7	24
15	Ï∈-Extension, Selenium Incorporation, and Trimerization: "Three in One―for Efficient Perylene Diimide Oligomer-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9528-9536.	4.0	23
16	Tuning Biradical Character to Enable High and Balanced Ambipolar Charge Transport in a Quinoidal π-System. Organic Letters, 2020, 22, 2553-2558.	2.4	21
17	BN-embedded eleven-ring fused heteroaromatics: Synthesis, optoelectronic properties and fluoride susceptibility. Dyes and Pigments, 2020, 177, 108271.	2.0	9
18	Design Principles, Sensing Mechanisms, and Applications of Highly Specific Fluorescent Probes for HOCl/OCl ^{â€"} . Accounts of Chemical Research, 2019, 52, 2158-2168.	7.6	285

#	Article	IF	Citations
19	Ring fusion attenuates the device performance: star-shaped long helical perylene diimide based non-fullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 9564-9572.	2.7	25
20	Isomeric Effect on Optoelectronic Properties and Photovoltaic Performance of Anthraquinoneâ€Core Perylene Diimide (PDI) and Helical PDI dimers. Chemistry - A European Journal, 2019, 25, 12137-12144.	1.7	16
21	Two-Photon Fluorescence Probe for Selective Monitoring of Superoxide in Live Cells and Tissues. Analytical Chemistry, 2019, 91, 14691-14696.	3.2	30
22	Ï€-Extension improves the photovoltaic performance: a helical perylene diimide oligomer based three-dimensional non-fullerene acceptor. Materials Chemistry Frontiers, 2019, 3, 2414-2420.	3.2	15
23	A two-photon fluorescent probe for colorimetric and ratiometric monitoring of mercury in live cells and tissues. Chemical Communications, 2019, 55, 1766-1769.	2.2	91
24	High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Organic Electronics, 2019, 73, 205-211.	1.4	29
25	A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dyes and Pigments, 2018, 158, 526-532.	2.0	67
26	An ESIPT fluorescent probe and a nanofiber platform for selective and sensitive detection of a nerve gas mimic. Chemical Communications, 2018, 54, 2276-2279.	2.2	68
27	Nâ∈Heterocyclic Carbene Boranes as Reactive Oxygen Speciesâ€Responsive Materials: Application to the Twoâ∈Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angewandte Chemie - International Edition, 2018, 57, 1567-1571.	7.2	127
28	Nâ∈Heterocyclic Carbene Boranes as Reactive Oxygen Speciesâ∈Responsive Materials: Application to the Twoâ∈Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angewandte Chemie, 2018, 130, 1583-1587.	1.6	26
29	Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coordination Chemistry Reviews, 2018, 354, 74-97.	9.5	280
30	Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene. ACS Sensors, 2018, 3, 27-43.	4.0	193
31	Cycloparaphenylenes (CPPs): An Overview of Synthesis, Properties, and Potential Applications. Asian Journal of Organic Chemistry, 2018, 7, 2161-2181.	1.3	87
32	An ESIPT-Based Fluorescence Probe for Colorimetric, Ratiometric, and Selective Detection of Phosgene in Solutions and the Gas Phase. Analytical Chemistry, 2017, 89, 12596-12601.	3.2	98
33	Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 2017, 46, 7105-7123.	18.7	1,436
34	A Far-Red-Emitting Fluorescence Probe for Sensitive and Selective Detection of Peroxynitrite in Live Cells and Tissues. Analytical Chemistry, 2017, 89, 10924-10931.	3.2	117
35	Fluorescent Probes Containing Selenium as a Guest or Host. CheM, 2016, 1, 674-698.	5.8	74
36	A colorimetric and ratiometric fluorescent probe for mercury (II) in lysosome. Sensors and Actuators B: Chemical, 2016, 224, 907-914.	4.0	54