
Dmitry V Krasnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Joint effect of ethylene and toluene on carbon nanotube growth. Carbon, 2022, 189, 474-483.	5.4	20
2	Highâ€Quality Graphene Using Boudouard Reaction. Advanced Science, 2022, 9, e2200217.	5.6	12
3	Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 18866-18876.	4.0	19
4	Local ultra-densification of single-walled carbon nanotube films: Experiment and mesoscopic modeling. Carbon, 2022, 196, 979-987.	5.4	4
5	Renewable single-walled carbon nanotube membranes for extreme ultraviolet pellicle applications. Carbon, 2022, 198, 364-370.	5.4	8
6	Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 2021, 345, 128747.	4.2	28
7	Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon, 2021, 173, 245-252.	5.4	22
8	Activation of catalyst particles for single-walled carbon nanotube synthesis. Chemical Engineering Journal, 2021, 413, 127475.	6.6	19
9	Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films. Nanomaterials, 2021, 11, 1503.	1.9	10
10	Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chemical Engineering Journal, 2021, 420, 129869.	6.6	21
11	Flexible Perovskite CsPbBr ₃ Light Emitting Devices Integrated with GaP Nanowire Arrays in Highly Transparent and Durable Functionalized Silicones. Journal of Physical Chemistry Letters, 2021, 12, 9672-9676.	2.1	6
12	Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials, 2021, 11, 2549.	1.9	8
13	Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation. Carbon, 2021, 184, 941-948.	5.4	9
14	Fine-tuning of spark-discharge aerosol CVD reactor for single-walled carbon nanotube growth: The role of ex situ nucleation. Chemical Engineering Journal, 2020, 383, 123073.	6.6	20
15	Electrochemical enhancement of optoelectronic performance of transparent and conducting single-walled carbon nanotube films. Carbon, 2020, 167, 244-248.	5.4	19
16	Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating. Carbon, 2020, 168, 193-200.	5.4	19
17	Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon, 2020, 161, 712-717.	5.4	38
18	Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. Journal of Materials Chemistry C, 2020, 8, 3764-3772.	2.7	27

DMITRY V KRASNIKOV

#	Article	IF	CITATIONS
19	Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon, 2019, 153, 100-103.	5.4	36
20	Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films. Journal of Physical Chemistry Letters, 2019, 10, 6962-6966.	2.1	54
21	Aerosol-Assisted Fine-Tuning of Optoelectrical Properties of SWCNT Films. Journal of Physical Chemistry Letters, 2019, 10, 3961-3965.	2.1	20
22	A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics. Chemical Engineering Journal, 2019, 372, 462-470.	6.6	30
23	Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube–Polymer Composites. Physica Status Solidi (B): Basic Research, 2018, 255, 1700257.	0.7	4
24	Electromagnetic Interaction Between Spherical Aerogels of Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700256.	0.7	13
25	Influence of the Growth Temperature on the Defective Structure of the Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700255.	0.7	12
26	Internal field 59Co NMR study of cobalt-iron nanoparticles during the activation of CoFe2/CaO catalyst for carbon nanotube synthesis. Journal of Catalysis, 2018, 358, 62-70.	3.1	31
27	Fe–Mo and Co–Mo Catalysts with Varying Composition for Multiâ€Walled Carbon Nanotube Growth. Physica Status Solidi (B): Basic Research, 2018, 255, 1700260.	0.7	26
28	Macroporous carbon aerogel as a novel adsorbent for immobilized enzymes and a support for the lipase-active heterogeneous biocatalysts for conversion of triglycerides and fatty acids. Journal of Porous Materials, 2018, 25, 1017-1026.	1.3	17
29	Side reaction in catalytic CVD growth of carbon nanotubes: Surface pyrolysis of a hydrocarbon precursor with the formation of lateral carbon deposits. Carbon, 2018, 139, 105-117.	5.4	18
30	A model for catalytic synthesis of carbon nanotubes in a fluidized-bed reactor: Effect of reaction heat. Chemical Engineering Journal, 2017, 329, 305-311.	6.6	17
31	Investigation of defectiveness of multiwalled carbon nanotubes produced with Fe–Co catalysts of different composition. Journal of Nanophotonics, 2016, 10, 012526.	0.4	22
32	Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2519-2523.	0.7	23
33	Raman spectra for characterization of defective CVD multiâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2444-2450.	0.7	81
34	<i>In situ</i> and <i>ex situ</i> time resolved study of multiâ€component FeCo oxide catalyst activation during MWNT synthesis. Physica Status Solidi (B): Basic Research, 2012, 249, 2390-2394.	0.7	62
35	Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes. Journal of Nanotechnology, 2012, 2012, 1-5.	1.5	22