
Navneet A Vasistha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics. Biological Psychiatry, 2022, 91, 727-739.	1.3	12
2	Development of the Entorhinal Cortex Occurs via Parallel Lamination During Neurogenesis. Frontiers in Neuroanatomy, 2021, 15, 663667.	1.7	7
3	iPSC-derived myelinoids to study myelin biology of humans. Developmental Cell, 2021, 56, 1346-1358.e6.	7.0	34
4	The impact of (ab)normal maternal environment on cortical development. Progress in Neurobiology, 2021, 202, 102054.	5.7	11
5	TDP-43 proteinopathy in oligodendrocytes revealed using an induced pluripotent stem cell model. Brain Communications, 2021, 3, fcab255.	3.3	4
6	Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Molecular Psychiatry, 2020, 25, 2313-2329.	7.9	54
7	Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nature Communications, 2020, 11, 5038.	12.8	80
8	Transplanted t(1;11) patient-derived OPCs form shorter myelin internodes in the hypomyelinated shiverer mice. Molecular Psychiatry, 2019, 24, 1567-1567.	7.9	0
9	Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte–myelin dysfunction. Molecular Psychiatry, 2019, 24, 1641-1654.	7.9	18
10	23MODELING A GENETIC RISK FOR SCHIZOPHRENIA: PHENOTYPIC DIFFERENCES IN HUMAN NEURAL PRECURSORS AND CEREBRAL ORGANOIDS FROM PATIENTS WITH CHR16P13.11 MICRODUPLICATIONS. European Neuropsychopharmacology, 2019, 29, S1079.	0.7	1
11	Reversal of proliferation deficits caused by chromosome 16p13.11 microduplication through targeting NFIºB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Molecular Psychiatry, 2019, 24, 294-311.	7.9	36
12	C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nature Communications, 2018, 9, 347.	12.8	151
13	437. Modeling Schizophrenia in Human Induced Pluripotent Stem Cells (hiPSCs): Phenotypic Differences in Patients with Mutations in NDE1. Biological Psychiatry, 2017, 81, S178-S179.	1.3	0
14	From sauropsids to mammals and back: New approaches to comparative cortical development. Journal of Comparative Neurology, 2016, 524, 630-645.	1.6	62
15	Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes. Stem Cells, 2016, 34, 1040-1053.	3.2	65
16	In Utero Electroporation Methods in the Study of Cerebral Cortical Development. Neuromethods, 2016, , 21-39.	0.3	3
17	Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cerebral Cortex, 2015, 25, 3290-3302.	2.9	144
18	CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development (Cambridge), 2014, 141, 1589-1598.	2.5	63

#	Article	IF	CITATIONS
19	Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Development, 2013, 8, 14.	2.4	42
20	Compartmentalization of Cerebral Cortical Germinal Zones in a Lissencephalic Primate and Gyrencephalic Rodent. Cerebral Cortex, 2012, 22, 482-492.	2.9	138
21	Hanging by the tail: progenitor populations proliferate. Nature Neuroscience, 2011, 14, 538-540.	14.8	18