Yancheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612047/publications.pdf

Version: 2024-02-01

257101 223531 2,509 102 24 46 h-index citations g-index papers 107 107 107 1459 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A state-of-the-art review on magnetorheological elastomer devices. Smart Materials and Structures, 2014, 23, 123001.	1.8	438
2	Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Materials and Structures, 2013, 22, 035005.	1.8	153
3	A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Materials and Structures, 2013, 22, 095020.	1.8	127
4	A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 2019, 177, 107437.	5.9	121
5	Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Materials and Structures, 2013, 22, 117001.	1.8	111
6	Negative stiffness devices for vibration isolation applications: A review. Advances in Structural Engineering, 2020, 23, 1739-1755.	1.2	95
7	Piezoelectric energy harvesting from traffic-induced pavement vibrations. Journal of Renewable and Sustainable Energy, 2014, 6, .	0.8	78
8	Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. Journal of Sound and Vibration, 2017, 406, 346-362.	2.1	71
9	Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mechanical Systems and Signal Processing, 2019, 119, 380-398.	4.4	56
10	Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm. Journal of Intelligent Material Systems and Structures, 2015, 26, 1789-1798.	1.4	51
11	Advancement in energy harvesting magneto-rheological fluid damper: A review. Korea Australia Rheology Journal, 2016, 28, 355-379.	0.7	47
12	Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization. Journal of Intelligent Material Systems and Structures, 2015, 26, 2446-2462.	1.4	45
13	A Highly Adjustable Base Isolator Utilizing Magnetorheological Elastomer: Experimental Testing and Modeling. Journal of Vibration and Acoustics, Transactions of the ASME, 2015, 137, .	1.0	44
14	Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica, 2015, 50, 2691-2707.	1.2	41
15	Effect of temperature on rheological properties of lithium-based magnetorheological grease. Smart Materials and Structures, 2019, 28, 035002.	1.8	41
16	Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy, 2021, 89, 106397.	8.2	37
17	A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator. Smart Materials and Structures, 2016, 25, 055029.	1.8	35
18	Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator. Neurocomputing, 2016, 211, 41-52.	3.5	34

#	Article	IF	CITATIONS
19	Comparative Investigation of Phenomenological Modeling for Hysteresis Responses of Magnetorheological Elastomer Devices. International Journal of Molecular Sciences, 2019, 20, 3216.	1.8	32
20	Finite element design and analysis of adaptive base isolator utilizing laminated multiple magnetorheological elastomer layers. Journal of Intelligent Material Systems and Structures, 2015, 26, 1861-1870.	1.4	31
21	Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control. Earthquake and Structures, 2016, 11, 943-966.	1.0	31
22	Design, modeling, and controlling of a large-scale magnetorheological shock absorber under high impact load. Journal of Intelligent Material Systems and Structures, 2012, 23, 635-645.	1.4	27
23	Development of adaptive seismic isolators for ultimate seismic protection of civil structures. Proceedings of SPIE, 2013, , .	0.8	27
24	Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles–Atherton hysteresis model. Smart Materials and Structures, 2015, 24, 105024.	1.8	27
25	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2020, 59, 3425-3437.	1.8	26
26	Experimental realisation of the realâ€time controlled smart magnetorheological elastomer seismic isolation system with shake table. Structural Control and Health Monitoring, 2020, 27, e2476.	1.9	25
27	Dynamic modelling and control of shear-mode rotational MR damper for mitigating hazard vibration of building structures. Smart Materials and Structures, 2020, 29, 114006.	1.8	25
28	Forecasting hysteresis behaviours of magnetorheological elastomer base isolator utilizing a hybrid model based on support vector regression and improved particle swarm optimization. Smart Materials and Structures, 2015, 24, 035025.	1.8	24
29	Investigations on response time of magnetorheological elastomer isolator for real-time control implementation. Smart Materials and Structures, 2016, 25, 11LT04.	1.8	24
30	Vibration control of jacket offshore platform through magnetorheological elastomer (MRE) based isolation system. Applied Ocean Research, 2021, 114, 102779.	1.8	24
31	Design and multi-physics optimization of a novel magnetorheological damper with a variable resistance gap. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 3152-3168.	1.1	23
32	Vibration control of offshore wind turbine under multiple hazards using single variable-stiffness tuned mass damper. Ocean Engineering, 2021, 236, 109473.	1.9	23
33	Two-dimensional magnetic property measurement for magneto-rheological elastomer. Journal of Applied Physics, 2013, 113, .	1.1	22
34	A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties. Smart Materials and Structures, 2016, 25, 115002.	1.8	22
35	Dynamic Simulation and Test Verification of MR Shock Absorber under Impact Load. Journal of Intelligent Material Systems and Structures, 2006, 17, 309-314.	1.4	21
36	Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester. International Journal of Smart and Nano Materials, 2014, 5, 152-168.	2.0	20

#	Article	IF	Citations
37	Accelerated thermal aging of grease-based magnetorheological fluids and their lifetime prediction. Materials Research Express, 2018, 5, 085702.	0.8	17
38	Rheological Properties of Polyurethane-Based Magnetorheological Gels. Frontiers in Materials, 2019, 6, .	1.2	17
39	Performance of a semi-active/passive integrated isolator based on a magnetorheological elastomer and spring. Smart Materials and Structures, 2017, 26, 095024.	1.8	16
40	Modified Adaptive Negative Stiffness Device with Variable Negative Stiffness and Geometrically Nonlinear Damping for Seismic Protection of Structures. International Journal of Structural Stability and Dynamics, 0, , 2150107.	1.5	16
41	Frequency control of smart base isolation system employing a novel adaptive magneto-rheological elastomer base isolator. Journal of Intelligent Material Systems and Structures, 2016, 27, 849-858.	1.4	15
42	Temperatureâ€Dependent Electromagnetic Microwave Absorbing Characteristics of Stretchable Polyurethane Composite Foams with Ultrawide Bandwidth. Advanced Engineering Materials, 2022, 24, 2101489.	1.6	14
43	Nonlinear Characterization of the MRE Isolator Using Binary-Coded Discrete CSO and ELM. International Journal of Structural Stability and Dynamics, 2018, 18, 1840007.	1.5	13
44	A simplified design method of tuned inerter damper for damped civil structures: Theory, validation, and application. Structural Control and Health Monitoring, 2021, 28, e2798.	1.9	13
45	Neuro fuzzy logic control of magnetorheological elastomer isolation system for vibration mitigation of offshore jacket platforms. Ocean Engineering, 2022, 253, 111293.	1.9	13
46	Experimental analysis of separately controlled multi-coils on the performance of magnetorheological absorber under impact loading. Journal of Intelligent Material Systems and Structures, 2016, 27, 887-897.	1.4	12
47	A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with magnetorheological (MR) devices. Smart Materials and Structures, 2018, 27, 015005.	1.8	12
48	Mitigating jacket offshore platform vibration under earthquake and ocean waves utilizing tuned inerter damper. Bulletin of Earthquake Engineering, 2023, 21, 1627-1650.	2.3	12
49	Highly stretchable and self-foaming polyurethane composite skeleton with thermally tunable microwave absorption properties. Nanotechnology, 2021, 32, 225703.	1.3	11
50	A novel structural seismic protection system with negative stiffness and controllable damping. Structural Control and Health Monitoring, 2021, 28, e2810.	1.9	11
51	Thixotropy of magnetorheological gel composites: Experimental testing and modelling. Composites Science and Technology, 2021, 214, 108996.	3.8	11
52	Design and modelling of a novel linear electromagnetic vibration energy harvester. International Journal of Applied Electromagnetics and Mechanics, 2014, 46, 165-183.	0.3	10
53	Characterization of nonlinear viscoelasticity of magnetorheological grease under large oscillatory shear by using Fourier transform-Chebyshev analysis. Journal of Intelligent Material Systems and Structures, 2021, 32, 614-631.	1.4	10
54	On rate-dependent mechanical model for adaptive magnetorheological elastomer base isolator. Smart Materials and Structures, 2017, 26, 045001.	1.8	9

#	Article	IF	CITATIONS
55	Development of a four-parameter phenomenological model for the nonlinear viscoelastic behaviour of magnetorheological gels. Materials and Design, 2020, 194, 108935.	3.3	9
56	Improved magnetic circuit analysis of a laminated magnetorheological elastomer device featuring both permanent magnets and electromagnets. Smart Materials and Structures, 2020, 29, 085054.	1.8	9
57	Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD. Earthquake and Structures, 2016, 11, 1101-1121.	1.0	9
58	Influence of inerterâ€based damper installations on control efficiency of building structures. Structural Control and Health Monitoring, 2022, 29, .	1.9	9
59	Modeling the non-linear rheological behavior of magnetorheological gel using a computationally efficient model. Smart Materials and Structures, 2020, 29, 105021.	1.8	8
60	Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators. Earthquake and Structures, 2016, 11, 1077-1099.	1.0	8
61	A New Hysteretic Model for Magnetorheological Elastomer Base Isolator and Parameter Identification Based on Modified Artificial Fish Swarm Algorithm. , 2014, , .		8
62	On the magnetic field and temperature monitoring of a solenoid coil for a novel magnetorheological elastomer base isolator. Journal of Physics: Conference Series, 2013, 412, 012033.	0.3	7
63	Hysteresis Modeling of Smart Structure MR Devices using Describing Functions. IEEE/ASME Transactions on Mechatronics, 2015, , 1-1.	3.7	7
64	Investigation of dynamic properties of isotropic and anisotropic magnetorheological elastomers with a hybrid magnet shear test rig. Smart Materials and Structures, 2020, 29, 114001.	1.8	7
65	A novel adaptive base isolator utilising magnetorheological elastomer. , 2012, , 763-767.		7
66	Influence of particle morphology and concentration on the piezoresistivity of cement-based sensors with magneto-aligned nickel fillers. Measurement: Journal of the International Measurement Confederation, 2022, 187, 110194.	2.5	7
67	Design considerations and experimental studies on semi-active smart pin joint. Frontiers of Mechanical Engineering in China, 2009, 4, 363-370.	0.4	6
68	Dynamic characteristics of a magnetorheological pin joint for civil structures. Frontiers of Mechanical Engineering, 2014, 9, 15-33.	2.5	6
69	A heavy-duty magnetorheological fluid mount with flow and squeeze model. Smart Materials and Structures, 2021, 30, 085012.	1.8	6
70	H2 and Hâ^ž optimal designs of tuned inerter dampers for base motion excited structures with inherent damping. JVC/Journal of Vibration and Control, 2023, 29, 3692-3707.	1.5	6
71	Energy harvesting for powering wireless sensor networks in low-frequency and large-force environments. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 1953-1964.	1.1	5
72	Aligning conductive particles using magnetic field for enhanced piezoresistivity of cementitious composites. Construction and Building Materials, 2021, 313, 125582.	3.2	5

#	Article	lF	CITATIONS
73	Investigation on controllability of a Magnetorheological gun recoil damper. , 2009, , .		4
74	Design of a novel linear permanent magnet vibration energy harvester., 2013,,.		4
7 5	Feasibility study of a miniaturized magnetorhological grease timing trigger as safety and arming device for spinning projectile. Smart Materials and Structures, 2018, 27, 115030.	1.8	4
76	Multi-objective optimisation for improving the seismic protection performance of a multi-storey adaptive negative stiffness system based on modified NSGA-II with DCD. Journal of Building Engineering, 2021, 43, 103145.	1.6	4
77	Enhanced sensing performance of cement-based composites achieved via magnetically aligned nickel particle network. Composites Communications, 2022, 29, 101006.	3.3	4
78	THE DYNAMIC SIMULATION AND TEST VERIFICATION OF MR SHOCK ABSORBER UNDER IMPACT LOAD. , 2005, , .		3
79	Investigation on modeling and controability of a magnetorheological gun recoil damper., 2009, , .		3
80	Dynamic Performance of a Novel Magnetorheological Pin Joint. Journal of System Design and Dynamics, 2011, 5, 706-715.	0.3	3
81	A piezoelectric wafer-stack vibration energy harvester for wireless sensor networks. Proceedings of SPIE, 2013, , .	0.8	3
82	Development and Modeling of a Highly-Adjustable Base Isolator Utilizing Magnetorheological Elastomer., 2013,,.		3
83	Nonlinear and Hysteretic Modelling of Magnetorheological Elastomer Base Isolator Using Adaptive Neuro-Fuzzy Inference System. Applied Mechanics and Materials, 2016, 846, 258-263.	0.2	3
84	Dynamic Modeling and Its Sliding Controller of MR Shock Absorber under Impact Load. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2011, 47, 84.	0.7	3
85	Comprehensive Investigations on Magnetic Field Distribution in a Solenoid. , 2013, , .		2
86	Comparative Studies of Base Isolation Systems Featured with Lead Rubber Bearings and Friction Pendulum Bearings. Applied Mechanics and Materials, 0, 846, 114-119.	0.2	2
87	Field–Frequency-Dependent Non-linear Rheological Behavior of Magnetorheological Grease Under Large Amplitude Oscillatory Shear. Frontiers in Materials, 2021, 8, .	1.2	2
88	Editorial: Synthesis, Characterization, and Applications of Magneto-Responsive Functional Materials. Frontiers in Materials, 2021, 8, .	1.2	2
89	Dynamic Property Optimization of a Vibration Isolator with Quasi-Zero Stiffness., 2021,, 289-295.		2
90	Efficient and stable electrorheological fluids based on chestnut-like cobalt hydroxide coupled with surface-functionalized carbon dots. Soft Matter, 2022, 18, 3845-3855.	1.2	2

#	Article	IF	Citations
91	Design and experimental testing of an adaptive magneto-rheological elastomer base isolator. , 2013, , .		1
92	A hysteresis model and parameter identification for MR pin joints using immune particle swarm optimization. , 2015, , .		1
93	Modeling and characterization of novel magnetorheological (MR) cell with individual currents. Journal of Central South University, 2015, 22, 2557-2567.	1.2	1
94	INVESTIGATION ON ITS VIBRATION-REDUCTION AND SHOCK-RESISTANT PROPERTIES OF A GUN RECOIL MECHANISM BASED ON MR DAMPER. , $2011, \dots$		0
95	Visualization of vortex motion in FeAs-based BaFe1.9Ni0.1As2 single crystal by means of magneto-optical imaging. Journal of Applied Physics, 2011, 109, 07E142.	1.1	0
96	Sigmoid function-based hysteresis modeling of magnetorheological pin joints. , 2017, , .		O
97	A New Methodology of Modeling a Novel Large-scale Magnetorheological Impact Damper. , 2006, , .		0
98	Nonlinear Characteristics of Magnetorheological Damper under Base Excitation., 2006,,.		0
99	Comprehensive Study on Controllability of a Large-Scale MR Shock Absorber Under High Impact Load. , 2007, , .		O
100	1A24 Dynamic Performance of A Novel Magnetorheological Pin Joint. The Proceedings of the Symposium on the Motion and Vibration Control, 2010, 2010, _1A24-11A24-8	0.0	0
101	Future Intelligent Civil Structures: Challenges and Opportunities. , 2014, , .		0
102	Development of smart base isolation system for civil structures utilising magnetorheological elastomer., 2019,, 355-394.		0