David A Taylor-Fishwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5611993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional and pathological roles of the 12- and 15-lipoxygenases. Progress in Lipid Research, 2011, 50, 115-131.	11.6	269
2	Monocarboxylate transporter MCT1 is a target for immunosuppression. Nature Chemical Biology, 2005, 1, 371-376.	8.0	226
3	A Pentadecapeptide Fragment of Islet Neogenesis-Associated Protein Increases Beta-Cell Mass and Reverses Diabetes in C57BL/6J Mice. Annals of Surgery, 2004, 240, 875-884.	4.2	140
4	Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Molecular and Cellular Endocrinology, 2012, 358, 88-95.	3.2	103
5	12-Lipoxygenase Products Reduce Insulin Secretion and β-Cell Viability in Human Islets. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 887-893.	3.6	96
6	Interleukin 4 induces interleukin 6 production by endothelial cells: Synergy with interferon-Î ³ . European Journal of Immunology, 1991, 21, 97-101.	2.9	72
7	Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes, Obesity and Metabolism, 2013, 15, 117-129.	4.4	67
8	Synthesis and Structure–Activity Relationship Studies of 4-((2-Hydroxy-3-methoxybenzyl)amino)benzenesulfonamide Derivatives as Potent and Selective Inhibitors of 12-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 495-506.	6.4	67
9	Discovery of Potent and Selective Inhibitors of Human Platelet-Type 12- Lipoxygenase. Journal of Medicinal Chemistry, 2011, 54, 5485-5497.	6.4	59
10	Raf-1 provides a dominant but not exclusive signal for the induction of CD69 expression on T cells. European Journal of Immunology, 1995, 25, 3215-3221.	2.9	49
11	Activation induced changes in expression and structure of the IL-7 receptor on human T cells. International Immunology, 1992, 4, 277-282.	4.0	40
12	Deletion of 12/15-Lipoxygenase Alters Macrophage and Islet Function in NOD-Alox15null Mice, Leading to Protection against Type 1 Diabetes Development. PLoS ONE, 2013, 8, e56763.	2.5	40
13	Interleukin-4 inhibits χ light chain expression and NFχB activation but not IχBα degradation in 70Z/3 murine pre-B cells. European Journal of Immunology, 1995, 25, 2961-2966.	2.9	39
14	Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia, 2016, 59, 673-678.	6.3	38
15	Intramuscular Injection of Islet Neogenesis-Associated Protein Peptide Stimulates Pancreatic Islet Neogenesis in Healthy Dogs. Pancreas, 2007, 34, 103-111.	1.1	37
16	Islet neogenesis associated protein transgenic mice are resistant to hyperglycemia induced by streptozotocin. Journal of Endocrinology, 2006, 190, 729-737.	2.6	35
17	Production and function of IL-12 in islets and beta cells. Diabetologia, 2013, 56, 126-135.	6.3	35
18	Cloning, expression and cross-linking analysis of the murine p55 tumor necrosis factor receptor. European Journal of Immunology, 1991, 21, 1649-1656.	2.9	34

DAVID A TAYLOR-FISHWICK

#	Article	IF	CITATIONS
19	The gp200-MR6 molecule which is functionally associated with the IL-4 receptor modulates B cell phenotype and is a novel member of the human macrophage mannose receptor family. European Journal of Immunology, 1998, 28, 4071-4083.	2.9	31
20	NOX, NOX Who is There? The Contribution of NADPH Oxidase One to Beta Cell Dysfunction. Frontiers in Endocrinology, 2013, 4, 40.	3.5	30
21	Inhibition of NADPH oxidase-1 preserves beta cell function. Diabetologia, 2015, 58, 113-121.	6.3	29
22	Selective inhibition of 12-lipoxygenase protects islets and beta cells from inflammatory cytokine-mediated beta cell dysfunction. Diabetologia, 2015, 58, 549-557.	6.3	27
23	Cloning genomic INGAP: a Reg-related family member with distinct transcriptional regulation sites. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1638, 83-89.	3.8	26
24	Regulation of NOX-1 expression in beta cells: A positive feedback loop involving the Src-kinase signaling pathway. Molecular and Cellular Endocrinology, 2013, 369, 35-41.	3.2	23
25	Biotinylated recombinant interleukin-2. Journal of Immunological Methods, 1988, 113, 221-229.	1.4	22
26	Interleukin-12 (IL-12)/STAT4 Axis Is an Important Element for β-Cell Dysfunction Induced by Inflammatory Cytokines. PLoS ONE, 2015, 10, e0142735.	2.5	22
27	The Reg Family Member INGAP Is a Marker of Endocrine Patterning in the Embryonic Pancreas. Pancreas, 2008, 36, 1-9.	1.1	21
28	12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2789-2797.	3.6	21
29	PDX-1 can repress stimulus-induced activation of the INGAP promoter. Journal of Endocrinology, 2006, 188, 611-621.	2.6	20
30	The Role of Islet Neogeneis-Associated Protein (INGAP) in Pancreatic Islet Neogenesis. Current Protein and Peptide Science, 2009, 10, 37-45.	1.4	19
31	A role for islet neogenesis in curing diabetes. Diabetologia, 2009, 52, 735-738.	6.3	19
32	Targeted expression of islet neogenesis associated protein to beta cells enhances glucose tolerance and confers resistance to streptozotocin-induced hyperglycemia. Molecular and Cellular Endocrinology, 2011, 335, 104-109.	3.2	17
33	Pancreatic Islet Immunoreactivity to the Reg Protein INGAP. Journal of Histochemistry and Cytochemistry, 2008, 56, 183-191.	2.5	16
34	Amelioration of type 1 diabetes following treatment of non-obese diabetic mice with INGAP and lisofylline. Journal of Diabetes Mellitus, 2012, 02, 251-257.	0.3	12
35	Inhibition of activation-induced changes in the structure of the T cell interleukin-7 receptor by cyclosporin A and FK506. European Journal of Immunology, 1993, 23, 85-89.	2.9	11
36	EVIDENCE THAT RAPAMYCIN HAS DIFFERENTIAL EFFECTS ON IL-4 FUNCTION. Transplantation, 1993, 56, 368-373.	1.0	10

#	ARTICLE	IF	CITATIONS
37	Stimulation of pancreatic islet neogenesis: a possible treatment for type 1 and type 2 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2004, 11, 125-140.	0.6	10
38	COMPARISON OF THE STRUCTURE OF THE MURINE INTERLEUKIN 2 (IL 2) RECEPTOR ON CYTOTOXIC AND HELPER T CELL LINES BY CHEMICAL CROSS-LINKING OF125I-LABELED IL 2. European Journal of Immunology, 1988, 18, 1515-1519.	2.9	9
39	Relationship of NADPH Oxidase-1 expression to beta cell dysfunction induced by inflammatory cytokines. Biochemical and Biophysical Research Communications, 2017, 485, 290-294.	2.1	7
40	Transplantation and beyond. Drug Development Research, 2008, 69, 165-176.	2.9	5
41	Pdx-1 Regulation of the INGAP Promoter Involves Sequestration of NeuroD Into a Non-DNA-Binding Complex. Pancreas, 2010, 39, 64-70.	1.1	5
42	Harnessing the Pancreatic Stem Cell. Endocrinology and Metabolism Clinics of North America, 2010, 39, 763-776.	3.2	5
43	K21-Antigen: A Molecule Shared by the Microenvironments of the Human Thymus and Germinal Centers. Autoimmunity, 1998, 6, 41-52.	0.6	2
44	Identification of a novel compound that protects beta cells and islets from dysfunction associated with inflammatory cytokines. Integrative Molecular Medicine, 2018, 5, .	0.3	1
45	Role of NADPH Oxidase in Beta Cell Dysfunction. , 2014, , 1-29.		Ο
46	Inflammatory Pathways Linked to Beta Cell Demise in Diabetes. , 2014, , 1-50.		0
47	Inflammatory Pathways Linked to \hat{I}^2 Cell Demise in Diabetes. , 2015, , 989-1045.		0
48	Role of NADPH Oxidase in \hat{l}^2 Cell Dysfunction. , 2015, , 923-954.		0