Naoki Irie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5611816/publications.pdf

Version: 2024-02-01

471509 434195 1,942 33 17 31 h-index citations g-index papers 37 37 37 2785 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	In the spotlight—Established researcher. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 5-6.	1.3	1
2	The developmental hourglass model and recapitulation: An attempt to integrate the two models. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 76-86.	1.3	10
3	Measuring potential effects of the developmental burden associated with the vertebrate notochord. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 129-136.	1.3	4
4	How can recapitulation be reconciled with modern concepts of evolution?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 28-35.	1.3	5
5	Beyond recapitulation: Past, present, and future. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 9-12.	1.3	1
6	Distinguishing Evolutionary Conservation from Derivedness. Life, 2022, 12, 440.	2.4	1
7	Potential contribution of intrinsic developmental stability toward body plan conservation. BMC Biology, 2022, 20, 82.	3.8	6
8	Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Frontiers in Cell and Developmental Biology, 2021, 9, 749963.	3.7	3
9	Whole embryonic detection of maternal microchimeric cells highlights significant differences in their numbers among individuals. PLoS ONE, 2021, 16, e0261357.	2.5	4
10	The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Developmental Biology, 2020, 460, 139-154.	2.0	16
11	Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Communications Biology, 2020, 3, 371.	4.4	34
12	Toward understanding of evolutionary constraints: experimental and theoretical approaches. Biophysical Reviews, 2020, 12, 1155-1161.	3. 2	9
13	Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. Zoological Letters, 2019, 5, 33.	1.3	24
14	Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos. EvoDevo, 2018, 9, 7.	3.2	24
15	Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus. Biochemical and Biophysical Research Communications, 2018, 495, 1395-1402.	2.1	15
16	The phylum Vertebrata: a case for zoological recognition. Zoological Letters, 2018, 4, 32.	1.3	32
17	Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nature Communications, 2017, 8, 14229.	12.8	61
18	Remaining questions related to the hourglass model in vertebrate evolution. Current Opinion in Genetics and Development, 2017, 45, 103-107.	3.3	20

#	Article	IF	CITATIONS
19	Constrained vertebrate evolution by pleiotropic genes. Nature Ecology and Evolution, 2017, 1, 1722-1730.	7.8	72
20	Centromere evolution and CpG methylation during vertebrate speciation. Nature Communications, 2017, 8, 1833.	12.8	78
21	The developmental hourglass model: a predictor of the basic body plan?. Development (Cambridge), 2014, 141, 4649-4655.	2.5	116
22	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	12.6	300
23	Turtle ghrelin. Nature Genetics, 2014, 46, 526-526.	21.4	0
24	The Evolutionary Origin of the Vertebrate Body Plan: The Problem of Head Segmentation. Annual Review of Genomics and Human Genetics, 2014, 15, 443-459.	6.2	21
25	The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45, 701-706.	21.4	409
26	Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nature Communications, 2011, 2, 248.	12.8	256
27	Biliary atresia: a new immunological insight into etiopathogenesis. Expert Review of Gastroenterology and Hepatology, 2009, 3, 599-606.	3.0	32
28	Maternal HLA Class I Compatibility in Patients With Biliary Atresia. Journal of Pediatric Gastroenterology and Nutrition, 2009, 49, 488-492.	1.8	16
29	Maternal Microchimerism in Underlying Pathogenesis of Biliary Atresia: Quantification and Phenotypes of Maternal Cells in the Liver. Pediatrics, 2008, 121, 517-521.	2.1	85
30	The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biology, 2007, 5, 1.	3.8	138
31	Fused protein of ÎPKC activation loop and PDK1-interacting fragment (ÎAL-PIF) functions as a pseudosubstrate and an inhibitory molecule for PDK1 when expressed in cells. Genes To Cells, 2006, 11, 1051-1070.	1.2	5
32	Essential roles of Meltrin \hat{l}^2 (ADAM19) in heart development. Developmental Biology, 2004, 267, 14-28.	2.0	101
33	Subtype- and species-specific knockdown of PKC using short interfering RNA (siRNA). Biochemical and Biophysical Research Communications, 2002, 298, 738-743.	2.1	43