Xun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561154/publications.pdf

Version: 2024-02-01

414414 394421 1,394 34 19 32 citations h-index g-index papers 34 34 34 2037 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science, 2017, 5, 1690-1698.	5.4	226
2	Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomaterialia, 2017, 55, 296-309.	8.3	148
3	Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 2016, 33, 96-109.	8.3	105
4	Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics, 2018, 8, 5039-5058.	10.0	93
5	Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regeneration Research, 2015, 10, 651.	3.0	85
6	Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 575057.	4.1	82
7	In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS Applied Materials & Interfaces, 2018, 10, 38715-38728.	8.0	68
8	Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale, 2019, 11, 19943-19958.	5.6	62
9	Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomaterialia, 2018, 77, 127-141.	8.3	61
10	Bioactive Self-Assembling Peptide Hydrogels Functionalized with Brain-Derived Neurotrophic Factor and Nerve Growth Factor Mimicking Peptides Synergistically Promote Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 2994-3005.	5.2	49
11	Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Research and Therapy, 2018, 9, 133.	5.5	47
12	A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Research, 2018, 11, 4599-4613.	10.4	43
13	Mechanisms and treatment of painful neuromas. Reviews in the Neurosciences, 2018, 29, 557-566.	2.9	36
14	Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. Journal of Orthopaedic Translation, 2019, 16, 62-70.	3.9	36
15	Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 592118.	4.1	32
16	Acellular Cauda Equina Allograft as Main Material Combined with Biodegradable Chitin Conduit for Regeneration of Longâ€Distance Sciatic Nerve Defect in Rats. Advanced Healthcare Materials, 2018, 7, e1800276.	7.6	26
17	Spatiotemporal regulation of endogenous MSCs using a functional injectable hydrogel system for cartilage regeneration. NPG Asia Materials, 2021, 13, .	7.9	24
18	Role of the Calcified Cartilage Layer of an Integrated Trilayered Silk Fibroin Scaffold Used to Regenerate Osteochondral Defects in Rabbit Knees. ACS Biomaterials Science and Engineering, 2020, 6, 1208-1216.	5.2	22

#	Article	IF	CITATIONS
19	Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects. Applied Materials Today, 2020, 19, 100548.	4.3	20
20	Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration. Neural Regeneration Research, 2016, 11, 1172.	3.0	20
21	Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation. European Spine Journal, 2021, 30, 2257-2270.	2.2	17
22	Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering. Current Stem Cell Research and Therapy, 2017, 12, 513-521.	1.3	14
23	The Immuno-Modulation Effect of Macrophage-Derived Extracellular Vesicles in Chronic Inflammatory Diseases. Frontiers in Immunology, 2021, 12, 785728.	4.8	14
24	Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Cell and Tissue Banking, 2019, 20, 351-365.	1.1	12
25	<p>Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 7155-7171.	6.7	12
26	The production, detection, and origin of irisin and its effect on bone cells. International Journal of Biological Macromolecules, 2021, 178, 316-324.	7.5	11
27	Synergistic Effects of Kartogenin and Transforming Growth Factorâ€Î²3 on Chondrogenesis of Human Umbilical Cord Mesenchymal Stem Cells In Vitro. Orthopaedic Surgery, 2020, 12, 938-945.	1.8	10
28	Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury. Scientific Reports, 2016, 6, 26579.	3.3	6
29	Protein microarray analysis of cytokine expression changes in distal stumps after sciatic nerve transection. Neural Regeneration Research, 2020, 15, 503.	3.0	4
30	Hyaluronic Acid-Coated Nanoparticles for the Localized Delivery of Methylprednisolone to the Injured Spinal Cord. Journal of Nanomaterials, 2021, 2021, 1-9.	2.7	3
31	Inhibition of Osteoarthritis in Rats by Electroporation with Interleukin-1 Receptor Antagonist. Journal of Biomedical Science and Engineering, 2016, 09, 323-336.	0.4	2
32	Targeted fully endoscopic visualized laminar trepanning approach under local anaesthesia for resection of highly migrated lumbar disc herniation. International Orthopaedics, 2022, 46, 1627-1636.	1.9	2
33	Can the Full-Percutaneous Endoscopic Lumbar Discectomy in Day Surgery Mode Achieve Better Outcomes Following Enhanced Recovery after Surgery Protocol? A Retrospective Comparative Study. Frontiers in Surgery, 2022, 9, .	1.4	2
34	Differences in the Structure and Protein Expression of Femoral Nerve Branches in Rats. Frontiers in Neuroanatomy, 2020, 14, 16.	1.7	0