Guijin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5611526/publications.pdf Version: 2024-02-01

CHUN SH

#	Article	IF	CITATIONS
1	High-spatial-resolution VOCs emission from the petrochemical industries and its differential regional effect on soil in typical economic zones of China. Science of the Total Environment, 2022, 827, 154318.	8.0	12
2	Distribution, influence factors, and biotoxicity of environmentally persistent free radical in soil at a typical coking plant. Science of the Total Environment, 2022, 835, 155493.	8.0	11
3	Constructed palladium-anchored hollow-rod-like graphitic carbon nitride created rapid visible-light-driven debromination of hexabromocyclododecane. Applied Catalysis B: Environmental, 2021, 297, 120409.	20.2	10
4	Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. Journal of Environmental Sciences, 2020, 93, 1-12.	6.1	48
5	Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. Environmental Pollution, 2020, 265, 114908.	7.5	65
6	Photochemical reactions of 1,3-butadiene with nitrogen oxide in different matrices: Kinetic behavior, humidity effect, product and mechanisms. Science of the Total Environment, 2020, 721, 137747.	8.0	3
7	An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Science of the Total Environment, 2020, 720, 137536.	8.0	121
8	Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. Journal of Hazardous Materials, 2019, 375, 52-60.	12.4	56
9	Thermal catalytic degradation of α-HBCD, β-HBCD and γ-HBCD over Fe3O4 micro/nanomaterial: Kinetic behavior, product analysis and mechanism hypothesis. Science of the Total Environment, 2019, 668, 1200-1212.	8.0	20
10	Photochemical conversion of toluene in simulated atmospheric matrix and characterization of large molecular weight products by +APPI FT-ICR MS. Science of the Total Environment, 2019, 649, 111-119.	8.0	9
11	Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotoxicology and Environmental Safety, 2019, 169, 797-806.	6.0	33
12	Emissions of 2,3,7,8-substituted and non-2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans from secondary aluminum smelters. Chemosphere, 2019, 215, 92-100.	8.2	8
13	Sustainable superior function of the synthesized NixCo1-xFe2Oz nanosphere on the destruction of chlorinated biphenyls in the effluent. Journal of Hazardous Materials, 2018, 344, 64-72.	12.4	5
14	Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: Occurrence, spatial distributions, and risk assessment. Science of the Total Environment, 2018, 615, 1199-1206.	8.0	65
15	Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China. Environmental Pollution, 2018, 233, 439-445.	7.5	67
16	The Regular/Persistent Free Radicals and Associated Reaction Mechanism for the Degradation of 1,2,4-Trichlorobenzene over Different MnO ₂ Polymorphs. Environmental Science & Technology, 2018, 52, 13351-13360.	10.0	57
17	Synthesis of three crystalline forms of Al ₂ O ₃ featuring rod-like fibers and their effect on the gaseous degradation of 1-chloronaphthalene. Environmental Science: Nano, 2017, 4, 994-1004.	4.3	9
18	Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere. Science of the Total Environment, 2017, 593-594, 390-398.	8.0	61

Guijin Su

#	Article	IF	CITATIONS
19	Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China. Environmental Pollution, 2017, 225, 674-680.	7.5	46
20	Degradation of one-side fully-chlorinated 1,2,3,4-tetrachloronaphthalene over Fe–Al composite oxides and its hypothesized reaction mechanism. RSC Advances, 2017, 7, 17577-17585.	3.6	3
21	Thermal Oxidation Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether over LiαTiOx Micro/Nanostructures with Dozens of Oxidative Product Analyses and Reaction Mechanisms. Environmental Science & Technology, 2017, 51, 10059-10071.	10.0	21
22	Determination of hexabromocyclododecanes in sediments from the Haihe River in China by an optimized HPLC–MS–MS method. Journal of Environmental Sciences, 2017, 55, 174-183.	6.1	9
23	Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide. Journal of Hazardous Materials, 2016, 317, 394-402.	12.4	14
24	Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism. Scientific Reports, 2016, 5, 17800.	3.3	11
25	Thermal degradation of polybrominated diphenyl ethers over as-prepared Fe3O4 micro/nano-material and hypothesized mechanism. Environmental Science and Pollution Research, 2016, 23, 1540-1551.	5.3	11
26	Thermal degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) over synthesized Fe–Al composite oxide. Chemosphere, 2016, 150, 445-452.	8.2	18
27	Thermal dechlorination of PCB-209 over Ca species-doped Fe2O3. Chemosphere, 2016, 144, 81-90.	8.2	10
28	The combined disposal of 1,2,4-trichlorobenzene and nitrogen oxides using the synthesized Ce _{0.2} TiAl _α O _x micro/nanomaterial. Catalysis Science and Technology, 2015, 5, 1041-1051.	4.1	19
29	Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene. Chemosphere, 2014, 99, 216-223.	8.2	21
30	Effect of NiFe2O4 on PCDF byproducts formation during thermal degradation of decachlorobiphenyl. RSC Advances, 2014, 4, 25453.	3.6	12
31	Thermal Degradation of Octachloronaphthalene over As-Prepared Fe ₃ O ₄ Micro/Nanomaterial and Its Hypothesized Mechanism. Environmental Science & Technology, 2014, 48, 6899-6908.	10.0	31
32	In-situ STM observation of the phase transition of two-dimensional 2,5-distyrylpyrazine nanostructure adsorbed on Au(111) in an electrochemical environment. Science China Chemistry, 2013, 56, 672-677.	8.2	1
33	Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway. Chemosphere, 2013, 90, 103-111.	8.2	22
34	Degradation of polychlorinated biphenyls using mesoporous iron-based spinels. Journal of Hazardous Materials, 2013, 261, 451-462.	12.4	34
35	Synthesis of flower-like Co3O4–CeO2 composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene. Applied Catalysis B: Environmental, 2012, 123-124, 440-447.	20.2	73
36	The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism. Journal of Hazardous Materials, 2011, 192, 1697-1704.	12.4	39

Guijin Su

#	Article	IF	CITATIONS
37	Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China. Chemosphere, 2011, 85, 1707-1712.	8.2	70
38	Development of Self-Assembled 3D Fe _{<l>x<l></l></l>} O _{<l>y</l>} Micro/Nano Materials for Application in Hexachlorobenzene Degradation. Journal of Nanoscience and Nanotechnology, 2011, 11, 2100-2106.	0.9	26
39	Estimation of Emissions of Polychlorinated Dibenzo- <i>p</i> -Dioxins and Dibenzofurans and Dioxin-Like Polychlorinated Biphenyls from Chinese Hot Dip Galvanizing Industries. Environmental Engineering Science, 2011, 28, 671-676.	1.6	12
40	ECSTM study of adsorption of C60, C70, C86 and Y@C82 on Au(111). Science China Chemistry, 2010, 53, 1705-1710.	8.2	1
41	Synthesis of a magnetic micro/nano Fe x O y -CeO2 composite and its application for degradation of hexachlorobenzene. Science China Chemistry, 2010, 53, 1266-1272.	8.2	18
42	A method for decomposition of hexachlorobenzene by γ-alumina. Journal of Hazardous Materials, 2008, 150, 831-834.	12.4	26
43	Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts. Journal of Environmental Sciences, 2008, 20, 1523-1526.	6.1	11