Chongyang Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5611487/publications.pdf

Version: 2024-02-01

759233 794594 29 405 12 19 citations h-index g-index papers 29 29 29 616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2017, 89, 2844-2851.	6.5	58
2	Tracing sialoglycans on cell membrane via surface-enhanced Raman scattering spectroscopy with a phenylboronic acid-based nanosensor in molecular recognition. Biosensors and Bioelectronics, 2017, 94, 148-154.	10.1	37
3	Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation. ACS Sensors, 2020, 5, 1758-1767.	7.8	36
4	Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Review of Scientific Instruments, 2014, 85, 056109.	1.3	24
5	Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Talanta, 2018, 179, 200-206.	5.5	24
6	Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Frontiers in Chemistry, 2018, 6, 665.	3.6	21
7	Identification of breast cancer through spectroscopic analysis of cell-membrane sialic acid expression. Analytica Chimica Acta, 2018, 1033, 148-155.	5.4	19
8	Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy. Analytical Chemistry, 2020, 92, 6081-6087.	6.5	19
9	Distinguishing cancer cell lines at aÂsingle living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Mikrochimica Acta, 2019, 186, 367.	5.0	18
10	Perspective of Future SERS Clinical Application Based on Current Status of Raman Spectroscopy Clinical Trials. Frontiers in Chemistry, 2021, 9, 665841.	3.6	16
11	Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sensors, 2021, 6, 1663-1670.	7.8	15
12	Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy. Analytical Chemistry, 2022, 94, 10375-10383.	6.5	15
13	In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Analytical and Bioanalytical Chemistry, 2018, 410, 585-594.	3.7	12
14	Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110724.	5.0	12
15	Tracing the molecular dynamics of living mitochondria under phototherapy <i>via</i> surface-enhanced Raman scattering spectroscopy. Analyst, The, 2019, 144, 5521-5527.	3.5	10
16	In situ exploration of characteristics of macropinocytosis and size range of internalized substances in cells by 3D-structured illumination microscopy. International Journal of Nanomedicine, 2018, Volume 13, 5321-5333.	6.7	9
17	Multi-functionalized Nano-conjugate for combating multidrug resistant breast Cancer via starvation-assisted chemotherapy. Materials Science and Engineering C, 2020, 116, 111127.	7.3	9
18	Single-Cell VEGF Analysis by Fluorescence Imaging–Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface. Analytical Chemistry, 2022, 94, 6591-6598.	6.5	8

#	Article	IF	CITATIONS
19	Ex situ and in situ surface-enhanced Raman spectroscopy for macromolecular profiles of cell nucleus. Analytical and Bioanalytical Chemistry, 2019, 411, 6021-6029.	3.7	7
20	Ultrasensitive detection of trypsin in serum via nanochannel device. Analytical and Bioanalytical Chemistry, 2021, 413, 4939-4945.	3.7	7
21	Ganoderma lucidum immunomodulatory protein(Lz-8) expressed in Pichia pastoris and the identification of immunocompetence. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2009, 25, 441-7.	0.2	6
22	Plasmon-Enhanced Four-Wave Mixing Imaging for Microdroplet-Based Single-Cell Analysis. Analytical Chemistry, 2020, 92, 9459-9464.	6.5	5
23	In situ and ex situ surfaceâ€enhanced Raman spectroscopy (SERS) analysis of cell mitochondria. Journal of Raman Spectroscopy, 2020, 51, 602-610.	2.5	5
24	Investigating Lysosomal Autophagy <i>via</i> Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2021, 93, 13038-13044.	6.5	5
25	Direct MYD88 ^{L265P} gene detection for diffuse large B-cell lymphoma (DLBCL) <i>via</i> a miniaturised CRISPR/dCas9-based sensing chip. Lab on A Chip, 2022, 22, 768-776.	6.0	5
26	Label-Free Analysis of Cell Membrane Proteins via Evanescent Field Excited Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2021, 12, 10720-10727.	4.6	2
27	A Novel Type of PD-L1 Inhibitor rU1 snRNPA From Human-Derived Protein Scaffolds Library. Frontiers in Oncology, 2021, 11, 781046.	2.8	1
28	An Epitope on EGFR Loading Catastrophic Internalization Serve as a Novel Oncotarget for Hepatocellular Carcinoma Therapy. Cancers, 2020, 12, 456.	3.7	0
29	Identification of ginsenoside metabolites in plasma related to different bioactivities of Panax notoginseng and Panax Ginseng. Biomedical Chromatography, 2022, , e5334.	1.7	O