Pascal Masselin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610919/publications.pdf

Version: 2024-02-01

759233 888059 22 300 12 17 h-index citations g-index papers 22 22 22 222 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Glassy GaS: transparent and unusually rigid thin films for visible to mid-IR memory applications. Physical Chemistry Chemical Physics, 2020, 22, 25560-25573.	2.8	15
2	Step-index fibre from metal halide chalcogenide glasses. Optical Materials Express, 2020, 10, 2800.	3.0	5
3	Bent Hgl ₂ Molecules in the Melt and Sulfide Glasses: Implications for Nonlinear Optics. Chemistry of Materials, 2019, 31, 4103-4112.	6.7	13
4	Ultrafast Laser Inscription of High-Performance Mid-Infrared Waveguides in Chalcogenide Glass. IEEE Photonics Technology Letters, 2018, 30, 2123-2126.	2.5	7
5	New Method for Direct Laser Writing of High Performances Near and Mid-infrared Waveguides. , 2018, , .		O
6	New strategy for direct laser writing of low loss waveguide. , 2017, , .		0
7	Telluride glasses with far-infrared transmission up to 35Âμm. Optical Materials, 2017, 72, 809-812.	3.6	16
8	Mercury Sulfide Dimorphism in Thioarsenate Glasses. Journal of Physical Chemistry B, 2016, 120, 5278-5290.	2.6	6
9	Direct laser writing of a low-loss waveguide with independent control over the transverse dimension and the refractive index contrast between the core and the cladding. Optics Letters, 2016, 41, 3507.	3.3	16
10	[INVITED] Tailoring the morphology of photowritten buried waveguides by helical trajectory in As2S3 glass. Optics and Laser Technology, 2016, 78, 56-61.	4.6	3
11	Influence of NaX (X=I or CI) additions on GeS2–Ga2S3 based glasses. Journal of Solid State Chemistry, 2014, 220, 238-244.	2.9	16
12	Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 $\mathring{1}$ 4m. Sensors, 2014, 14, 9027-9045.	3.8	12
13	Mercury thioarsenate glasses: a hybrid chain/pyramidal network. RSC Advances, 2014, 4, 49236-49246.	3.6	13
14	Direct laser writing of buried waveguide in As_2S_3 glass using a helical sample translation. Optics Letters, 2013, 38, 4212.	3.3	24
15	Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass. Optical Materials Express, 2012, 2, 1768.	3.0	39
16	CsCl effect on the optical properties of the 80GeS2–20Ga2S3 base glass. Applied Physics A: Materials Science and Processing, 2012, 106, 697-702.	2.3	37
17	Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation. Optics Express, 2011, 19, 20088.	3.4	17
18	Synthesis and properties of new CdSe–AgI–As2Se3 chalcogenide glasses. Materials Research Bulletin, 2011, 46, 210-215.	5.2	9

#	Article	IF	CITATION
19	Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate. Optical Materials, 2011, 33, 872-876.	3.6	14
20	Morphology of waveguide written by femtosecond laser in glass. Journal of Non-Crystalline Solids, 2009, 355, 1832-1835.	3.1	11
21	Four-wave mixing in one-dimensional photonic crystals: inhomogeneous-wave excitation. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1865.	2.1	15
22	Nonlinear process in photonic crystals under the noncollinear interaction. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2083.	2.1	12