
Stephen Rattigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microvascular Recruitment Is an Early Insulin Effect That Regulates Skeletal Muscle Glucose Uptake In Vivo. Diabetes, 2004, 53, 1418-1423.	0.3	367
2	Blood flow and muscle metabolism: a focus on insulin action. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E241-E258.	1.8	293
3	Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E123-E129.	1.8	269
4	Physiologic Hyperinsulinemia Enhances Human Skeletal Muscle Perfusion by Capillary Recruitment. Diabetes, 2001, 50, 2682-2690.	0.3	218
5	Skeletal Muscle Microvascular Recruitment by Physiological Hyperinsulinemia Precedes Increases in Total Blood Flow. Diabetes, 2002, 51, 42-48.	0.3	184
6	Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-alpha. Diabetes, 2000, 49, 1904-1909.	0.3	159
7	Insulin Sensitivity of Muscle Capillary Recruitment In Vivo. Diabetes, 2004, 53, 447-453.	0.3	146
8	Lipid Infusion Impairs Physiologic Insulin-Mediated Capillary Recruitment and Muscle Glucose Uptake In Vivo. Diabetes, 2002, 51, 1138-1145.	0.3	143
9	Insulin-Mediated Hemodynamic Changes Are Impaired in Muscle of Zucker Obese Rats. Diabetes, 2002, 51, 3492-3498.	0.3	122
10	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.3	120
11	Acute vasoconstriction-induced insulin resistance in rat muscle in vivo. Diabetes, 1999, 48, 564-569.	0.3	109
12	Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Letters, 1987, 217, 232-236.	1.3	103
13	The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes/Metabolism Research and Reviews, 2004, 20, 3-12.	1.7	91
14	Breast-milk production in Australian women. British Journal of Nutrition, 1981, 45, 243-249.	1.2	77
15	A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H450-H458.	1.5	71
16	Vascular and Metabolic Actions of the Green Tea Polyphenol Epigallocatechin Gallate. Current Medicinal Chemistry, 2014, 22, 59-69.	1.2	70
17	Insulinâ€Induced Microvascular Recruitment in Skin and Muscle are Related and Both are Associated with Wholeâ€Body Clucose Uptake. Microcirculation, 2012, 19, 494-500.	1.0	68
18	Decreased microvascular vasomotion and myogenic response in rat skeletal muscle in association with acute insulin resistance. Journal of Physiology, 2009, 587, 2579-2588.	1.3	67

#	Article	IF	CITATIONS
19	Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E301-E307.	1.8	66
20	Local Nitric Oxide Synthase Inhibition Reduces Skeletal Muscle Glucose Uptake but Not Capillary Blood Flow During In Situ Muscle Contraction in Rats. Diabetes, 2007, 56, 2885-2892.	0.3	64
21	Nutritive and non-nutritive blood flow: rest and exercise. Acta Physiologica Scandinavica, 2000, 168, 519-530.	2.3	63
22	Activation of AMP-Activated Protein Kinase by 5-Aminoimidazole-4-Carboxamide-1-β- <scp>d</scp> -Ribofuranoside in the Muscle Microcirculation Increases Nitric Oxide Synthesis and Microvascular Perfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1137-1142.	1.1	62
23	Exercise Training Improves Insulin-Mediated Capillary Recruitment in Association With Glucose Uptake in Rat Hindlimb. Diabetes, 2001, 50, 2659-2665.	0.3	61
24	ACTIVE ROLE FOR THE VASCULATURE IN THE DELIVERY OF INSULIN TO SKELETAL MUSCLE. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 302-307.	0.9	60
25	Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1094, 217-223.	1.9	57
26	Vasopressin and angiotensin II stimulate oxygen uptake in the perfused rat hindlimb. Life Sciences, 1988, 43, 1747-1754.	2.0	55
27	Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E804-E809.	1.8	55
28	TNF-α acutely inhibits vascular effects of physiological but not high insulin or contraction. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E654-E660.	1.8	54
29	Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes, 1997, 46, 1381-1388.	0.3	53
30	GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E355-E362.	1.8	51
31	Muscle microvascular blood flow responses in insulin resistance and ageing. Journal of Physiology, 2016, 594, 2223-2231.	1.3	50
32	Skeletal Muscle Microvascular-Linked Improvements in Glycemic Control From Resistance Training in Individuals With Type 2 Diabetes. Diabetes Care, 2017, 40, 1256-1263.	4.3	50
33	Interleukin-6 Attenuates Insulin-Mediated Increases in Endothelial Cell Signaling but Augments Skeletal Muscle Insulin Action via Differential Effects on Tumor Necrosis Factor-I± Expression. Diabetes, 2009, 58, 1086-1095.	0.3	49
34	Insulin stimulates laser Doppler signal by rat muscle in vivo, consistent with nutritive flow recruitment. Clinical Science, 2001, 100, 283-290.	1.8	45
35	Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise. Journal of Applied Physiology, 2008, 104, 889-891.	1.2	45
36	The Microvasculature in Insulin Resistance and Type 2 Diabetes. Seminars in Vascular Medicine, 2002, 2, 021-032.	2.1	44

#	Article	IF	CITATIONS
37	Muscle Perfusion. Diabetes, 2012, 61, 2661-2668.	0.3	43
38	Inhibition by vasodilators of noradrenaline and vasoconstrictor-mediated, but not skeletal muscle contraction-induced oxygen uptake in the perfused rat hindlimb; implications for non-shivering thermogenesis in muscle tissue. General Pharmacology, 1990, 21, 141-148.	0.7	42
39	Serotonin-mediated acute insulin resistance in the perfused rat hindlimb but not in incubated muscle: A role for the vascular system. Life Sciences, 1993, 53, 1545-1555.	2.0	42
40	Serotonin inhibition of 1-methylxanthine metabolism parallels its vasoconstrictor activity and inhibition of oxygen uptake in perfused rat hindlimb. Acta Physiologica Scandinavica, 1997, 161, 161-169.	2.3	38
41	<i>N</i> â€Acetylcysteine infusion does not affect glucose disposal during prolonged moderateâ€intensity exercise in humans. Journal of Physiology, 2010, 588, 1623-1634.	1.3	36
42	Nutritive blood flow as an essential element supporting muscle anabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 185-189.	1.3	35
43	Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovascular Research, 2013, 98, 28-36.	1.8	34
44	Treatment with the Thiazolidinedione (BRL 49653) Decreases Insulin Resistance in Obese Zucker Hindlimb. Hormone and Metabolic Research, 1995, 27, 169-172.	0.7	33
45	Loss of insulinâ€mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes, Obesity and Metabolism, 2010, 12, 798-805.	2.2	33
46	Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E745-E750.	1.8	33
47	α-Adrenergic receptors in rat skeletal muscle. Biochemical and Biophysical Research Communications, 1986, 136, 1071-1077.	1.0	32
48	Acute glucosamine-induced insulin resistance in muscle in vivo is associated with impaired capillary recruitment. Diabetologia, 2005, 48, 2131-2139.	2.9	31
49	Acute blockade by endothelin-1 of haemodynamic insulin action in rats. Diabetologia, 2007, 50, 443-451.	2.9	31
50	Obesity, Insulin Resistance, and Capillary Recruitment. Microcirculation, 2007, 14, 299-309.	1.0	30
51	Exercise and insulin-mediated capillary recruitment in muscle. Exercise and Sport Sciences Reviews, 2005, 33, 43-8.	1.6	27
52	Nutritive blood flow affects microdialysis O/I ratio for [14C]ethanol and3H2O in perfused rat hindlimb. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2731-H2737.	1.5	26
53	A vascular mechanism for high-sodium-induced insulin resistance in rats. Diabetologia, 2014, 57, 2586-2595.	2.9	25
54	Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E307-E315.	1.8	24

4

#	Article	IF	CITATIONS
55	Local methacholine but not bradykinin potentiates insulin-mediated glucose uptake in muscle in vivo by augmenting capillary recruitment. Diabetologia, 2004, 47, 2226-2234.	2.9	22
56	Heterogeneity of laser Doppler flowmetry in perfused muscle indicative of nutritive and nonnutritive flow. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1324-H1333.	1.5	21
57	The effects of α- and β-adrenergic agents, Ca2+ and insulin on 2-deoxyglucose uptake and phosphorylation in perfused rat heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 889, 225-235.	1.9	20
58	Metabolic and vascular actions of endothelin-1 are inhibited by insulin-mediated vasodilation in perfused rat hindlimb muscle. British Journal of Pharmacology, 2005, 145, 992-1000.	2.7	20
59	cGMP phosphodiesterase inhibition improves the vascular and metabolic actions of insulin in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E342-E350.	1.8	20
60	Differential effects of glucagonâ€like peptideâ€1 on microvascular recruitment and glucose metabolism in short―and longâ€ŧerm insulin resistance. Journal of Physiology, 2015, 593, 2185-2198.	1.3	20
61	The apparent absence of serotonin-mediated vascular thermogenesis in perfused rat hindlimb may result from vascular shunting. Life Sciences, 1991, 48, 1555-1564.	2.0	19
62	Insulin stimulates laser Doppler signal by rat muscle in vivo, consistent with nutritive flow recruitment. Clinical Science, 2001, 100, 283.	1.8	19
63	Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat. Journal of Applied Physiology, 2010, 108, 1275-1283.	1.2	19
64	Adiponectin opposes endothelin-1-mediated vasoconstriction in the perfused rat hindlimb. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H79-H86.	1.5	19
65	Regulation of microvascular flow and metabolism: An overview. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 143-149.	0.9	19
66	Vasoconstrictor-mediated release of lactate from the perfused rat hindlimb. Journal of Applied Physiology, 1992, 73, 2544-2551.	1.2	18
67	Vascular Control of Nutrient Delivery by Flow Redistribution Within Muscle: Implications for Exercise and Post-Exercise Muscle Metabolism. International Journal of Sports Medicine, 1998, 19, 391-400.	0.8	18
68	Increased metabolism of infused 1-methylxanthine by working muscle. Acta Physiologica Scandinavica, 1999, 166, 301-308.	2.3	17
69	Impairments in Adipose Tissue Microcirculation in Type 2 Diabetes Mellitus Assessed by Real-Time Contrast-Enhanced Ultrasound. Circulation: Cardiovascular Imaging, 2018, 11, e007074.	1.3	17
70	Nutritive blood flow improves interstitial glucose and lactate exchange in perfused rat hindlimb. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H186-H192.	1.5	16
71	Insulin and contraction increase nutritive blood flow in rat muscle <i>in vivo</i> determined by microdialysis of <scp>l</scp> â€{ ¹⁴ C]glucose. Journal of Physiology, 2007, 585, 217-229.	1.3	16
72	Enantioselective disposition of (R/S)â€albuterol in skeletal and cardiac muscle. Drug Testing and Analysis, 2014, 6, 563-567.	1.6	16

#	Article	IF	CITATIONS
73	Pulsatile interaction between the macro-vasculature and micro-vasculature: proof-of-concept among patients with type 2 diabetes. European Journal of Applied Physiology, 2018, 118, 2455-2463.	1.2	16
74	Nonnutritive flow impairs uptake of fatty acid by white muscles of the perfused rat hindlimb. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E611-E617.	1.8	15
75	Graded occlusion of perfused rat muscle vasculature decreases insulin action. Clinical Science, 2007, 112, 457-466.	1.8	15
76	Microvascular blood flow responses to muscle contraction are not altered by highâ€fat feeding in rats. Diabetes, Obesity and Metabolism, 2012, 14, 753-761.	2.2	15
77	Exercise aortic stiffness: reproducibility and relation to end-organ damage in men. Journal of Human Hypertension, 2013, 27, 516-522.	1.0	15
78	Co-ordinated regulation of muscle glycolysis and hepatic glucose output in exercise by catecholamines acting via $\hat{l}\pm$ -receptors. FEBS Letters, 1983, 158, 1-6.	1.3	14
79	Effect of Sucrose Solution Drinking Option on the Development of Obesity in Rats. Journal of Nutrition, 1984, 114, 1971-1977.	1.3	14
80	Failure of Laser Doppler Signal to Correlate with Total Flow in Muscle: Is This a Question of Vessel Architecture?. Microvascular Research, 2000, 60, 294-301.	1.1	14
81	Insulin-mediated capillary recruitment in skeletal muscle: Is this a mediator of insulin action on glucose metabolism?. Current Diabetes Reports, 2003, 3, 195-200.	1.7	14
82	Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. Journal of Applied Physiology, 2015, 118, 1113-1121.	1.2	14
83	Contrast-enhanced ultrasound measurement of microvascular perfusion relevant to nutrient and hormone delivery in skeletal muscle: A model study in vitro. Microvascular Research, 2008, 75, 323-329.	1.1	13
84	Microvascular Contributions to Insulin Resistance. Diabetes, 2013, 62, 343-345.	0.3	13
85	The effect of a high-fat diet and sucrose drinking option on the development of obesity in spontaneously hypertensive rats. British Journal of Nutrition, 1986, 56, 73-80.	1.2	12
86	Acute vascular and metabolic actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle. Journal of Nutritional Biochemistry, 2017, 40, 23-31.	1.9	12
87	Acute effects of wortmannin on insulin's hemodynamic and metabolic actions in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E779-E787.	1.8	11
88	No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R862-R871.	0.9	11
89	Metformin improves vascular and metabolic insulin action in insulin-resistant muscle. Journal of Endocrinology, 2019, 243, 85-96.	1.2	11
90	Breastfeeding and Reproduction in Women in Western Australia ? A Review. Birth, 1981, 8, 215-226.	1.1	10

#	Article	IF	CITATIONS
91	Microsphere infusion reverses vasoconstrictorâ€mediated change in hindlimb oxygen uptake and energy status. Acta Physiologica Scandinavica, 1998, 164, 61-69.	2.3	10
92	Postprandial microvascular blood flow in skeletal muscle: Similarities and disparities to the hyperinsulinaemicâ€euglycaemic clamp. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 725-737.	0.9	10
93	T-1032, a cyclic GMP phosphodiesterase-5 inhibitor, acutely blocks physiologic insulin-mediated muscle haemodynamic effects and glucose uptake in vivo. British Journal of Pharmacology, 2003, 140, 1283-1291.	2.7	9
94	Microvascular flow routes in muscle controlled by vasoconstrictors. Microvascular Research, 2005, 70, 7-16.	1.1	9
95	Factors Influencing the Hemodynamic and Metabolic Effects of Insulin in Muscle. Current Diabetes Reviews, 2006, 2, 61-70.	0.6	9
96	CrossTalk proposal: <i>De novo</i> capillary recruitment in healthy muscle is necessary. Journal of Physiology, 2014, 592, 5129-5131.	1.3	9
97	Na ⁺ channel and Na ⁺ -K ⁺ ATPase involvement in norepinephrine- and veratridine-stimulated metabolism in perfused rat hind limb. Canadian Journal of Physiology and Pharmacology, 1999, 77, 350-357.	0.7	8
98	Interaction between metabolism and flow in tendon and muscle. Scandinavian Journal of Medicine and Science in Sports, 2000, 10, 338-345.	1.3	8
99	Relationship of MTT reduction to stimulants of muscle metabolism. Chemico-Biological Interactions, 2000, 128, 127-140.	1.7	8
100	Acute, local infusion of angiotensin II impairs microvascular and metabolic insulin sensitivity in skeletal muscle. Cardiovascular Research, 2019, 115, 590-601.	1.8	8
101	Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia, 2022, 65, 216-225.	2.9	7
102	Muscle metabolism and control of capillary blood flow: insulin and exercise. Essays in Biochemistry, 2006, 42, 133-144.	2.1	7
103	Effect of phorbol esters on the distribution and total activity of protein kinase c in the perfused rat heart. International Journal of Biochemistry & Cell Biology, 1989, 21, 1415-1420.	0.8	6
104	Hypertension in obesity may reflect a homeostatic thermogenic response. Life Sciences, 1991, 48, 939-947.	2.0	6
105	Vascular and metabolic effects of methacholine in relation to insulin action in muscle. Diabetologia, 2006, 49, 713-723.	2.9	6
106	Last Word on Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise. Journal of Applied Physiology, 2008, 104, 900-900.	1.2	6
107	Determination of Skeletal Muscle Microvascular Flowmotion with Contrast-Enhanced Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 2013-2023.	0.7	6
108	Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle. Journal of Physiology, 2017, 595, 7427-7439.	1.3	6

#	Article	IF	CITATIONS
109	Characterization of α1-adrenergic receptors in perfused rat heart. Journal of Molecular and Cellular Cardiology, 1988, 20, 1025-1034.	0.9	5
110	Effects of central administration of insulin or <scp>l</scp> â€NMMA on rat skeletal muscle microvascular perfusion. Diabetes, Obesity and Metabolism, 2010, 12, 900-908.	2.2	5
111	Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. Cardiovascular Diabetology, 2015, 14, 91.	2.7	5
112	Vasoconstrictor-mediated thermogenesis present in perfused skeletal muscle but absent from perfused heart. Journal of Thermal Biology, 2002, 27, 151-158.	1.1	4
113	Axially symmetric semi-infinite domain models of microdialysis and their application to the determination of nutritive flow in rat muscle. Journal of Physiology, 2005, 563, 213-228.	1.3	4
114	POTENTIAL FOR ENDOTHELIN-1-MEDIATED IMPAIRMENT OF CONTRACTILE ACTIVITY IN HYPERTENSION. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 217-222.	0.9	4
115	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E311-E312.	1.8	4
116	Alpha adrenergic receptor mechanism: Biochemical events. Journal of Molecular and Cellular Cardiology, 1986, 18, 69-77.	0.9	3
117	[32P]Phosphate Autoradiography as an Indicator of Regional Myocardial Oxygen Consumption?. Journal of Molecular and Cellular Cardiology, 1993, 25, 289-302.	0.9	3
118	Similarities between vasoconstrictor- and veratridine-stimulated metabolism in perfused rat hind limb. Canadian Journal of Physiology and Pharmacology, 1998, 76, 125-132.	0.7	3
119	Spatial Distribution of Nutritive and Nonnutritive Vascular Routes in Perfused Rat Hindlimb Muscle Using Microspheres. Microvascular Research, 2001, 61, 111-121.	1.1	3
120	Endothelial Na+-D-glucose Cotransporter: No Role in Insulin-mediated Glucose Uptake. Hormone and Metabolic Research, 2005, 37, 657-661.	0.7	3
121	Barriers to the management of Diabetes Mellitus – is there a future role for Laser Doppler Flowmetry?. Australasian Medical Journal, 2012, 5, 627-632.	0.1	3
122	Are the metabolic benefits of resistance training in type 2 diabetes linked to improvements in adipose tissue microvascular blood flow?. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1242-E1250.	1.8	3
123	Comparison of adrenergic agonist and insulin effects on 3-0-methyl-d-glucose efflux and sarcolemmal cytochalasin B binding by perfused rat heart. International Journal of Biochemistry & Cell Biology, 1988, 20, 291-295.	0.8	2
124	Glucose-Induced Loss of Exercise-Mediated 3-0-Methyl Glucose Uptake by Isolated Rat Soleus and Epitrochlearis Muscles. Hormone and Metabolic Research, 1990, 22, 121-122.	0.7	2
125	A close association between vasoconstrictor-mediated uracil and lactate release by the perfused rat hindlimb. General Pharmacology, 1992, 23, 65-69.	0.7	2
126	Potential defect in the vascular control of nonshivering thermogenesis in the obese Zucker rat hind limb. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1567-1573.	0.7	2

#	Article	IF	CITATIONS
127	Size-Dependent Effects of Microspheres on Vasoconstrictor-Mediated Change in Oxygen Uptake by Perfused Rat Hindlimb. Microvascular Research, 2001, 62, 306-314.	1.1	2
128	Rebuttal from Eugene J. Barrett, Michelle A. Keske, Stephen Rattigan and Etto C. Eringa. Journal of Physiology, 2014, 592, 5137-5138.	1.3	1
129	Cardiac Ca2+ Channels and Sarcolemma Redox. , 1988, , 359-368.		1
130	Nutritional effects on cardiac glucose metabolism. Journal of Molecular and Cellular Cardiology, 1984, 16, xv-xv.	0.9	0
131	Binding studies and biochemical data indicate functional α2-adrenergic receptors in rat heart. Journal of Molecular and Cellular Cardiology, 1985, 17, ix-ix.	0.9	0
132	Vascular involvement in resting muscle thermogenesis: a new site of action for thermogenic drugs. European Journal of Pharmacology, 1990, 183, 677.	1.7	0
133	RE: "PRECURSORS OF ESSENTIAL HYPERTENSION: PULMONARY FUNCTION, HEART RATE, URIC ACID, SERUM CHOLESTEROL, AND OTHER SERUM CHEMISTRIES†American Journal of Epidemiology, 1991, 133, 753-753.	1.6	0
134	Reply from J. Newman, R. Dwyer, P. Stâ€Pierre, S. Richards, M. Clark and S. Rattigan. Journal of Physiology, 2009, 587, 5291-5292.	1.3	0