Hans Oechsner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards a standardization of biomethane potential tests. Water Science and Technology, 2016, 74, 2515-2522.	1.2	592
2	Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 2015, 178, 178-186.	4.8	541
3	Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresource Technology, 2016, 215, 304-313.	4.8	166
4	Biological hydrogen methanation â \in " A review. Bioresource Technology, 2017, 245, 1220-1228.	4.8	147
5	Biogas production with horse dung in solid-phase digestion systems. Bioresource Technology, 2008, 99, 1280-1292.	4.8	96
6	Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic digestion. Chemical Engineering Journal, 2013, 223, 436-441.	6.6	82
7	Methane yield potential of novel perennial biogas crops influenced by harvest date. Industrial Crops and Products, 2014, 58, 194-203.	2.5	76
8	Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresource Technology, 2018, 247, 96-102.	4.8	69
9	Degradation efficiency of agricultural biogas plants – A full-scale study. Bioresource Technology, 2015, 178, 341-349.	4.8	68
10	Is the continuous two-stage anaerobic digestion process well suited for all substrates?. Bioresource Technology, 2016, 200, 470-476.	4.8	60
11	Electric Energy Consumption of the Full Scale Research Biogas Plant "Unterer Lindenhof†Results of Longterm and Full Detail Measurements. Energies, 2012, 5, 5198-5214.	1.6	57
12	Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters. Bioresource Technology, 2018, 247, 1-6.	4.8	56
13	Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays. Bioprocess and Biosystems Engineering, 2014, 37, 1759-1770.	1.7	53
14	Repeatability of a laboratory batch method to determine the specific biogas and methane yields. Engineering in Life Sciences, 2012, 12, 270-278.	2.0	52
15	Methane formation potential of cup plant (SilphiumÂperfoliatum). Biomass and Bioenergy, 2015, 75, 126-133.	2.9	51
16	Enhancement of methane production with horse manure supplement and pretreatment in a full-scale biogas process. Energy, 2014, 73, 523-530.	4.5	50
17	Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresource Technology, 2015, 178, 194-200.	4.8	50
18	Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environmental Technology (United Kingdom), 2015, 36, 198-207.	1.2	49

#	Article	IF	CITATIONS
19	Mineral substances and macronutrients in the anaerobic conversion of biomass: An impact evaluation. Engineering in Life Sciences, 2012, 12, 287-294.	2.0	41
20	Influence of anaerobic digestion on the labile phosphorus in pig, chicken, and dairy manure. Science of the Total Environment, 2020, 737, 140234.	3.9	40
21	Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Conversion and Management, 2020, 222, 113218.	4.4	39
22	Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth – An advanced green biorefining approach. Bioresource Technology, 2015, 178, 217-225.	4.8	38
23	Biomethane Potential Test: Influence of Inoculum and the Digestion System. Applied Sciences (Switzerland), 2020, 10, 2589.	1.3	38
24	Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability, 2018, 10, 2678.	1.6	37
25	Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates. International Journal of Environment and Waste Management, 2012, 9, 69.	0.2	35
26	Anaerobic digestion beyond biogas. Bioresource Technology, 2021, 337, 125378.	4.8	33
27	Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 2021, 333, 125110.	4.8	30
28	Impact of genotype, harvest time and chemical composition on the methane yield of winter rye for biogas production. Biomass and Bioenergy, 2011, 35, 4316-4323.	2.9	29
29	Effect of substrate pretreatment on particle size distribution in a full-scale research biogas plant. Bioresource Technology, 2014, 172, 396-402.	4.8	28
30	Energy balance of a two-phase anaerobic digestion process for energy crops. Engineering in Life Sciences, 2010, 10, 515-519.	2.0	27
31	Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. Bioresource Technology, 2022, 360, 127633.	4.8	27
32	Food waste co-digestion in Germany and the United States: From lab to full-scale systems. Resources, Conservation and Recycling, 2019, 148, 104-113.	5.3	25
33	Biogas Upgrading: Current and Emerging Technologies. , 2019, , 817-843.		24
34	Anaerobic digestion of high-yielding tropical energy crops for biomethane production: Effects of crop types, locations and plant parts. Bioresource Technology, 2018, 262, 194-202.	4.8	23
35	Nearâ€infrared spectroscopic online monitoring of process stability in biogas plants. Engineering in Life Sciences, 2012, 12, 295-305.	2.0	22
36	Development of an in-line process viscometer for the full-scale biogas process. Bioresource Technology, 2015, 178, 278-284.	4.8	21

#	Article	IF	CITATIONS
37	Optimizing anaerobic digestion of organic fraction of municipal solid waste (OFMSW) by using biomass ashes as additives. Waste Management, 2020, 109, 136-148.	3.7	20
38	Life cycle assessment of the conversion of Zea mays and x Triticosecale into biogas and bioethanol. Engineering in Life Sciences, 2010, 10, 577-584.	2.0	19
39	Methane yield of oat husks. Biomass and Bioenergy, 2011, 35, 2627-2633.	2.9	19
40	Characterization of the separately collected organic fraction of municipal solid waste (OFMSW) from rural and urban districts for a one-year period in Germany. Waste Management, 2021, 131, 471-482.	3.7	19
41	Microbiome dynamics and adaptation of expression signatures during methane production failure and process recovery. Bioresource Technology, 2018, 247, 347-356.	4.8	16
42	Introducing Temperature as Variable Parameter into Kinetic Models for Anaerobic Fermentation of Coffee Husk, Pulp and Mucilage. Applied Sciences (Switzerland), 2019, 9, 412.	1.3	16
43	A biorefinery concept using forced chicory roots for the production of biogas, hydrochar, and platform chemicals. Biomass Conversion and Biorefinery, 2021, 11, 1453-1463.	2.9	16
44	Innovative additives for chemical desulphurisation in biogas processes: A comparative study on iron compound products. Biochemical Engineering Journal, 2017, 121, 181-187.	1.8	14
45	Effects of Increasing Nitrogen Content on Process Stability and Reactor Performance in Anaerobic Digestion. Energies, 2020, 13, 1139.	1.6	14
46	Two-stage anaerobic digestion of sugar beet silage: The effect of the pH-value on process parameters and process efficiency. Bioresource Technology, 2017, 245, 876-883.	4.8	13
47	Testing different ensiling parameters to increase butyric acid concentration for maize silage, followed by silage separation and methane yield potential of separated solids residues. Bioresource Technology Reports, 2019, 7, 100193.	1.5	12
48	Demand-oriented biogas production and biogas storage in digestate by flexibly feeding a full-scale biogas plant. Bioresource Technology, 2021, 332, 125099.	4.8	12
49	Simultaneous determination of a spectrum of trichothecene toxins out of residuals of biogas production. Journal of Chromatography A, 2008, 1193, 92-96.	1.8	11
50	Advanced green biorefining: effects of ensiling treatments on lactic acid production, microbial activity and supplementary methane formation of grass and rye. Biomass Conversion and Biorefinery, 2016, 6, 197-208.	2.9	10
51	Biological methanation of injected hydrogen in a two-stage anaerobic digestion process. Bioresource Technology, 2021, 333, 125126.	4.8	10
52	Enhancing the analytical capacity for biogas development in Brazil: assessment of an original measurement system for low biogas flow rates out of agricultural biomass residues. Engenharia Agricola, 2016, 36, 792-798.	0.2	10
53	Influence of Anaerobic Digestion Processes on the Germination of Weed Seeds. Gesunde Pflanzen, 2020, 72, 181-194.	1.7	9
54	Multiposition Sensor Technology and Lance-Based Sampling for Improved Monitoring of the Liquid Phase in Biogas Processes. Energy & Fuels, 2015, 29, 4038-4045.	2.5	8

#	Article	IF	CITATIONS
55	Influence on lactic acid content in maize silage variations by manganese supplementation. Industrial Crops and Products, 2016, 79, 146-151.	2.5	8
56	Increasing the loading rate of continuous stirred tank reactor for coffee husk and pulp: Effect of trace elements supplement. Engineering in Life Sciences, 2018, 18, 551-561.	2.0	8
57	Adapted Hedley fractionation for the analysis of inorganic phosphate in biogas digestate. Bioresource Technology, 2021, 331, 125038.	4.8	8
58	Advances in Biogas Research and Application. Bioresource Technology, 2015, 178, 177.	4.8	7
59	Influence of Maintenance Intervals on Performance and Emissions of a 192 kWel Biogas Gas Otto CHP Unit and Results of Lubricating Oil Quality Tests—Outcome from a Continuous Two-Year Measuring Campaign. Energies, 2013, 6, 2819-2839.	1.6	6
60	Assessment of Areal Methane Yields from Energy Crops in Ukraine, Best Practices. Applied Sciences (Switzerland), 2020, 10, 4431.	1.3	6
61	Optimal conditions for high solid co-digestion of organic fraction of municipal solid wastes in a leach-bed reactor. Bioresource Technology, 2021, 331, 125023.	4.8	6
62	Operating Performance of Full-Scale Agricultural Biogas Plants in Germany and China: Results of a Year-Round Monitoring Program. Applied Sciences (Switzerland), 2021, 11, 1271.	1.3	5
63	Combined Butyric Acid and Methane Production from Grass Silage in a Novel Green Biorefinery Concept. Waste and Biomass Valorization, 2022, 13, 1873-1884.	1.8	5
64	Improving the energetic utilization of household food waste: Impact of temperature and atmosphere during storage. Waste Management, 2022, 144, 366-375.	3.7	5
65	Investigation of the mixing behaviour of a full-scale biogas plant using biodegradable tracers. Biomass and Bioenergy, 2020, 139, 105613.	2.9	4
66	Influence of Digester Temperature on Methane Yield of Organic Fraction of Municipal Solid Waste (OFMSW). Applied Sciences (Switzerland), 2021, 11, 2907.	1.3	4
67	Upgrading the Organic Fraction of Municipal Solid Waste by Low Temperature Hydrothermal Processes. Energies, 2021, 14, 3041.	1.6	4
68	Degradation of hop latent viroid during anaerobic digestion of infected hop harvest residues. European Journal of Plant Pathology, 2021, 161, 579-591.	0.8	4
69	Response of phosphorus speciation to organic loading rates and temperatures during anaerobic co-digestion of animal manures and wheat straw. Science of the Total Environment, 2022, 838, 155921.	3.9	4
70	Datasets on chemical composition and anaerobic digestion of organic fraction of municipal solid waste (OFMSW), digested sewage sludge (inoculum) and ashes from incineration or gasification. Data in Brief, 2020, 31, 105797.	0.5	3
71	Comparison of Biological Efficiency Assessment Methods and Their Application to Full-Scale Biogas Plants. Energies, 2021, 14, 2381.	1.6	3
72	Dataset for a full-year time series characterization of separately collected organic fraction of municipal solid waste from rural and urban regions in Germany. Data in Brief, 2021, 39, 107543.	0.5	3

#	Article	IF	CITATIONS
73	Methane production of banana plant: Yield, kinetics and prediction models influenced by morphological parts, cultivars and ripening stages. Bioresource Technology, 2022, , 127640.	4.8	3
74	Editorial: Biogas science – State of the art and future perspectives. Engineering in Life Sciences, 2010, 10, 491-492.	2.0	2
75	Editorial: Progress in biogas – State of the art and future perspectives: Engineering in Life Sciences 3'12. Engineering in Life Sciences, 2012, 12, 239-240.	2.0	2
76	pH-depended flushing in an automatized batch leach bed reactor system for volatile fatty acid production. Bioresource Technology, 2022, 360, 127611.	4.8	1