
David Curiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Twoâ€Dimensional Chiral Surface Selfâ€Assembly of a Ï€â€Conjugated System with Threeâ€Fold Symmetry: Benzotri(7â€Azaindole). Angewandte Chemie - International Edition, 2021, 60, 1782-1788.	7.2	8
2	Synthesis and Twoâ€Dimensional Chiral Surface Selfâ€Assembly of a Ï€â€Conjugated System with Threeâ€Fold Symmetry: Benzotri(7â€Azaindole). Angewandte Chemie, 2021, 133, 1810-1816.	1.6	0
3	Effect of molecular geometry and extended conjugation on the performance of hydrogen-bonded semiconductors in organic thin-film field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 10819-10829.	2.7	5
4	Frontispiece: Synthesis and Twoâ€Dimensional Chiral Surface Selfâ€Assembly of a Ï€â€Conjugated System with Threeâ€Fold Symmetry: Benzotri(7â€Azaindole). Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
5	Use of Sodium Diethyldithiocarbamate to Enhance the Openâ€Circuit Voltage of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000811.	3.1	5
6	Improving the Robustness of Organic Semiconductors through Hydrogen Bonding. ACS Applied Materials & amp; Interfaces, 2021, 13, 8620-8630.	4.0	13
7	Pyreneâ€Based Smallâ€Molecular Hole Transport Layers for Efficient and Stable Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100454.	3.1	14
8	Frontispiz: Synthesis and Twoâ€Dimensional Chiral Surface Selfâ€Assembly of a Ï€â€Conjugated System with Threeâ€Fold Symmetry: Benzotri(7â€Azaindole). Angewandte Chemie, 2021, 133, .	1.6	0
9	A Selfâ€Assembled Smallâ€Moleculeâ€Based Holeâ€Transporting Material for Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 10276-10282.	1.7	19
10	Interfacial and bulk charge transport in indolo[2,3-a]carbazole. Synthetic Metals, 2020, 261, 116308.	2.1	1
11	Rigid ï€-Extended Boron Difluoride Complex with Mega-Stokes Shift for Bioimaging. Organic Letters, 2020, 22, 3356-3360.	2.4	37
12	Hydrogen-bonded azaphenacene: a strategy for the organization of π-conjugated materials. Journal of Materials Chemistry C, 2018, 6, 3968-3975.	2.7	15
13	Structure–Property Correlation behind the High Mobility of Carbazolocarbazole. Journal of Physical Chemistry C, 2018, 122, 11736-11746.	1.5	6
14	Hydrogen Bond-Directed Cruciform and Stacked Packing of a Pyrrole-Based Azaphenacene. Crystal Growth and Design, 2017, 17, 3371-3378.	1.4	10
15	Synthesis and characterization of carbazolo[2,1-a]carbazole in thin film and single crystal field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 7020-7027.	2.7	8
16	Preorganized Fluorescent Receptor for the Preferential Binding of the Glutarate Anion. European Journal of Organic Chemistry, 2016, 2016, 3878-3883.	1.2	13
17	Single Heteroatom Fine-Tuning of the Emissive Properties in Organoboron Complexes with 7-(Azaheteroaryl)indole Systems. Journal of Organic Chemistry, 2016, 81, 3296-3302.	1.7	38
18	Doped-carbazolocarbazoles as hole transporting materials in small molecule solar cells with different architectures. Organic Electronics, 2015, 17, 28-32.	1.4	6

DAVID CURIEL

#	Article	lF	CITATIONS
19	Binding studies and anion-selective electrodes with neutral isophthalamide-based receptors. Analyst, The, 2015, 140, 287-294.	1.7	3
20	Complexation and sensing of dicarboxylate anions and dicarboxylic acids. Coordination Chemistry Reviews, 2015, 284, 19-66.	9.5	75
21	Anion Binding Studies on Receptors Derived from the Indolo[2,3-a]carbazole Scaffold Having Different Binding Cavity Sizes. Sensors, 2014, 14, 14038-14049.	2.1	3
22	Conductivity and nanoscale morphology of thin films prepared from indolo[2,3-a]carbazole and 11,12-dioctylindolo[2,3-a]carbazole. Journal of Materials Science: Materials in Electronics, 2014, 25, 5452-5461.	1.1	2
23	Highly sensitive and selective detection of the pyrophosphate anion biomarker under physiological conditions. Chemical Science, 2014, 5, 2328-2335.	3.7	18
24	New carbazolo[1,2-a]carbazole derivative as ionophore for anion-selective electrodes: Remarkable recognition towards dicarboxylate anions. Talanta, 2014, 123, 200-206.	2.9	11
25	Bis(carbazolyl)ureas as Selective Receptors for the Recognition of Hydrogenpyrophosphate in Aqueous Media. Journal of Organic Chemistry, 2013, 78, 9725-9737.	1.7	29
26	Modified mesoporous silica nanoparticles as a reusable, selective chromogenic sensor for mercury(ii) recognition. Dalton Transactions, 2013, 42, 6318.	1.6	32
27	Multifunctional carbazolocarbazoles as hole transporting and emitting host materials in red phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 3421.	2.7	29
28	Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors. Journal of Materials Chemistry C, 2013, 1, 1959.	2.7	38
29	Combined study of anion recognition by a carbazole-based neutral tripodal receptor in a competitive environment. Organic and Biomolecular Chemistry, 2012, 10, 1896.	1.5	24
30	Rational design of a fluorescent receptor for the recognition of anthrax biomarker dipicolinate. Analyst, The, 2012, 137, 5499.	1.7	25
31	Indolocarbazole-Based Ligands for Ladder-Type Four-Coordinate Boron Complexes. Organic Letters, 2012, 14, 3360-3363.	2.4	69
32	Synthesis and Characterization of New Carbazolocarbazoles: Toward π-Extended N-Fused Heteroacenes. Organic Letters, 2010, 12, 3164-3167.	2.4	26
33	A new building block for anion supramolecular chemistry. Study of carbazolocarbazole as anion receptor. Organic and Biomolecular Chemistry, 2010, 8, 4811.	1.5	19
34	Electrochemically Induced Intermolecular Anion Transfer. Chemistry - A European Journal, 2009, 15, 7534-7538.	1.7	9
35	A new open benzodipyrrole-based chemosensor for hydrogenpyrophosphate anion in aqueous environment. Chemical Communications, 2009, , 7539.	2.2	33
36	Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chemical Communications, 2008, , 3154.	2.2	77

DAVID CURIEL

#	Article	IF	CITATIONS
37	Sensitised near infrared emission from lanthanides via anion-templated assembly of d–f heteronuclear [2]pseudorotaxanes. New Journal of Chemistry, 2006, 30, 1133-1136.	1.4	56
38	Fluorescent Anion Complexation Agents. , 2005, , 59-118.		8
39	Anion directed synthesis of a hydrogensulfate selective luminescent rotaxane. Chemical Communications, 2005, , 1909.	2.2	85
40	Indolocarbazoles: a new family of anion sensors. Chemical Communications, 2005, , 236.	2.2	184
41	Halide anion directed assembly of luminescent pseudorotaxanes. Chemical Communications, 2004, , 1162.	2.2	40