William G Vandenberghe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610408/publications.pdf

Version: 2024-02-01

106 papers 4,003 citations

172207 29 h-index 61 g-index

108 all docs 108 docs citations

108 times ranked 4052 citing authors

#	Article	IF	CITATIONS
1	Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. Npj 2D Materials and Applications, $2018, 2, .$	3.9	563
2	Tunnel field-effect transistor without gate-drain overlap. Applied Physics Letters, 2007, 91, .	1.5	384
3	Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs. IEEE Transactions on Electron Devices, 2012, 59, 292-301.	1.6	370
4	Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. Journal of Applied Physics, 2010, 107, .	1,1	217
5	Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates. IEEE Electron Device Letters, 2008, 29, 1398-1401.	2.2	161
6	Charge Mediated Reversible Metal–Insulator Transition in Monolayer MoTe ₂ and W _{<i>x</i>} Mo _{1–<i>x</i>} Te ₂ Alloy. ACS Nano, 2016, 10, 7370-7375.	7.3	133
7	Optimization of Gate-on-Source-Only Tunnel FETs With Counter-Doped Pockets. IEEE Transactions on Electron Devices, 2012, 59, 2070-2077.	1.6	126
8	Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. Journal of Applied Physics, 2008, 104, .	1.1	125
9	A Novel PNPN-Like Z-Shaped Tunnel Field- Effect Transistor With Improved Ambipolar Behavior and RF Performance. IEEE Transactions on Electron Devices, 2017, 64, 4752-4758.	1.6	106
10	Impact of field-induced quantum confinement in tunneling field-effect devices. Applied Physics Letters, 2011, 98, .	1.5	99
11	Figure of merit for and identification of sub-60 mV/decade devices. Applied Physics Letters, 2013, 102, .	1.5	95
12	Imperfect two-dimensional topological insulator field-effect transistors. Nature Communications, 2017, 8, 14184.	5.8	79
13	Mermin-Wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry. Physical Review B, 2016, 93, .	1.1	78
14	Theoretical studies of electronic transport in monolayer and bilayer phosphorene: A critical overview. Physical Review B, 2018, 98, .	1.1	78
15	Analytical model for a tunnel field-effect transistor. , 2008, , .		77
16	Highâ€Mobility Helical Tellurium Fieldâ€Effect Transistors Enabled by Transferâ€Free, Lowâ€Temperature Direct Growth. Advanced Materials, 2018, 30, e1803109.	11.1	71
17	Quantum Mechanical Performance Predictions of p-n-i-n Versus Pocketed Line Tunnel Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2128-2134.	1.6	57
18	Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semiconductor Science and Technology, 2011, 26, 085001.	1.0	54

#	Article	IF	Citations
19	Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields: A rigorous approach. Journal of Applied Physics, 2011, 109, 124503.	1.1	48
20	Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers. Npj 2D Materials and Applications, 2021, 5, .	3.9	48
21	Identification of two-dimensional layered dielectrics from first principles. Nature Communications, 2021, 12, 5051.	5.8	44
22	Counterdoped Pocket Thickness Optimization of Gate-on-Source-Only Tunnel FETs. IEEE Transactions on Electron Devices, 2013, 60, 6-12.	1.6	43
23	Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B, 2016, 94, .	1.1	42
24	<i>Ab initio</i> study of the electronic properties and thermodynamic stability of supported and functionalized two-dimensional Sn films. Physical Review B, 2015, 91, .	1.1	39
25	Tellurium as a successor of silicon for extremely scaled nanowires: a first-principles study. Npj 2D Materials and Applications, 2020, 4, .	3.9	39
26	Fermi Level Manipulation through Native Doping in the Topological Insulator Bi ₂ Se ₃ . ACS Nano, 2018, 12, 6310-6318.	7.3	37
27	A model determining optimal doping concentration and material's band gap of tunnel field-effect transistors. Applied Physics Letters, 2012, 100, Critical behavior of the terromagnets <mml:math< td=""><td>1.5</td><td>36</td></mml:math<>	1.5	36
28	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Crl</mml:mi><mml:mn>3</mml:mn></mml:msub> <mml:mo>,</mml:mo> , A <mml:mn>3</mml:mn> , and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi< td=""><td>/mml:mo> < 1.1</td><td>cmml:msub><1 36</td></mml:mi<></mml:msub></mml:math>	/mml:mo> < 1.1	cmml:msub><1 36
29	mathvariant="normal">CrGeTe <mml:mn>3</mml:mn> and the antife Theoretical Study of the Gate Leakage Current in Sub-10-nm Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 3862-3869.	1.6	35
30	Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation. Journal of Applied Physics, 2014, 115, 044505.	1.1	34
31	Low-field mobility in ultrathin silicon nanowire junctionless transistors. Applied Physics Letters, 2011, 99, .	1.5	29
32	Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties. APL Materials, 2018, 6, .	2.2	29
33	Monte-Carlo study of electronic transport in non- $\langle i \rangle \hat{I} f \langle i \rangle h$ -symmetric two-dimensional materials: Silicene and germanene. Journal of Applied Physics, 2018, 124, .	1.1	28
34	Zener tunneling in semiconductors under nonuniform electric fields. Journal of Applied Physics, 2010, 107, 054520.	1.1	27
35	Dislocation driven spiral and non-spiral growth in layered chalcogenides. Nanoscale, 2018, 10, 15023-15034.	2.8	24
36	Deformation potentials for band-to-band tunneling in silicon and germanium from first principles. Applied Physics Letters, 2015, 106, 013505.	1.5	23

#	Article	IF	CITATIONS
37	Theoretical Study of Ballistic Transport in Silicon Nanowire and Graphene Nanoribbon Field-Effect Transistors Using Empirical Pseudopotentials. IEEE Transactions on Electron Devices, 2017, 64, 2758-2764.	1.6	23
38	Scalable atomistic simulations of quantum electron transport using empirical pseudopotentials. Computer Physics Communications, 2019, 244, 156-169.	3.0	23
39	Transition-metal nitride halide dielectrics for transition-metal dichalcogenide transistors. Nanoscale, 2021, 14, 157-165.	2.8	23
40	Two-dimensional quantum mechanical modeling of band-to-band tunneling in indirect semiconductors. , $2011, , .$		21
41	Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors. Journal of Applied Physics, 2016, 119, 035701.	1.1	21
42	Interfacial graphene growth in the Ni/SiO ₂ system using pulsed laser deposition. Applied Physics Letters, 2013, 103, 134102.	1.5	20
43	Quantum mechanical solver for confined heterostructure tunnel field-effect transistors. Journal of Applied Physics, 2014, 115, 053706.	1.1	20
44	Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy. Physical Review Research, 2021, 3, .	1.3	20
45	Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects. 2D Materials, 2019, 6, 025011.	2.0	18
46	Calculation of room temperature conductivity and mobility in tin-based topological insulator nanoribbons. Journal of Applied Physics, 2014, 116, .	1.1	17
47	New Verbeekite-type polymorphic phase and rich phase diagram in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PdSe</mml:mi><mm .<="" 104,="" 2021,="" b,="" physical="" review="" system.="" th=""><th>l:mrøw><i< th=""><th>mrn&mn>2∢/n</th></i<></th></mm></mml:msub></mml:mrow></mml:math>	l:mrøw> <i< th=""><th>mrn&mn>2∢/n</th></i<>	mr n& mn>2∢/n
48	Magnetic properties and critical behavior of magnetically intercalated WSe ₂ : a theoretical study. 2D Materials, 2021, 8, 025009.	2.0	16
49	Novel Device Concepts for Nanotechnology: The Nanowire Pinch-Off FET and Graphene TunnelFET. ECS Transactions, 2010, 28, 15-26.	0.3	14
50	Electronic Transport Properties of Silicane Determined from First Principles. Materials, 2019, 12, 2935.	1.3	14
51	Channel Length Optimization for Planar LDMOS Field-Effect Transistors for Low-Voltage Power Applications. IEEE Journal of the Electron Devices Society, 2020, 8, 711-715.	1.2	14
52	First-principles study of electronic transport in germanane and hexagonal boron nitride. Physical Review B, 2021, 104, .	1.1	14
53	Simulation Study on the Optimization and Scaling Behavior of LDMOS Transistors for Low-Voltage Power Applications. IEEE Transactions on Electron Devices, 2020, 67, 4990-4997.	1.6	13
54	Field induced quantum confinement in Indirect Semiconductors: Quantum mechanical and modified semiclassical model. , 2011 , , .		12

#	Article	IF	Citations
55	Modeling the impact of junction angles in tunnel field-effect transistors. Solid-State Electronics, 2012, 69, 31-37.	0.8	10
56	(Invited) Boosting the On-Current of Si-Based Tunnel Field-Effect Transistors. ECS Transactions, 2010, 33, 363-372.	0.3	9
57	Inter-ribbon tunneling in graphene: An atomistic Bardeen approach. Journal of Applied Physics, 2016, 119, 214306.	1.1	9
58	Energy levels in dilute-donor organic solar cell photocurrent generation: A thienothiophene donor molecule study. Organic Electronics, 2021, 92, 106137.	1.4	9
59	Monte Carlo analysis of phosphorene nanotransistors. Journal of Computational Electronics, 2021, 20, 60-69.	1.3	9
60	Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness. Physical Review Materials, 2019, 3, .	0.9	9
61	A Simulation Study on Process Sensitivity of a Line Tunnel Field-Effect Transistor. IEEE Transactions on Electron Devices, 2013, 60, 1019-1027.	1.6	8
62	Phonon-assisted Zener tunneling in a cylindrical nanowire transistor. Journal of Applied Physics, 2013, 113, 184507.	1.1	7
63	Electronic transport properties of hydrogenated and fluorinated graphene: a computational study. Journal of Physics Condensed Matter, 2020, 32, 495502.	0.7	7
64	Tunnel Field-Effect Transistors for Future Low-Power Nano-Electronics. ECS Transactions, 2009, 25, 455-462.	0.3	6
65	An envelope function formalism for lattice-matched heterostructures. Physica B: Condensed Matter, 2015, 470-471, 69-75.	1.3	6
66	Generation of empirical pseudopotentials for transport applications and their application to group IV materials. Journal of Applied Physics, 2020, 128, .	1.1	6
67	Ab-Initio Study of Magnetically Intercalated Platinum Diselenide: The Impact of Platinum Vacancies. Materials, 2021, 14, 4167.	1.3	6
68	Theoretical study of electron transport in silicene and germanene using full-band Monte Carlo simulations. , 2016 , , .		5
69	Special issue on two-dimensional materials. Journal of Computational Electronics, 2021, 20, 1-1.	1.3	5
70	A First-Principles Study on the Electronic, Thermodynamic and Dielectric Properties of Monolayer Ca(OH)2 and Mg(OH)2. Nanomaterials, 2022, 12, 1774.	1.9	5
71	Realizing a topological-insulator field-effect transistor using iodostannanane. , 2014, , .		4
72	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-\$k\$ on SixGe1â^'x and InxGa1â^'xAs: Part Ilâ€"Fits and Extraction From Experimental Data. IEEE Transactions on Electron Devices, 2017, 64, 3794-3801.	1.6	4

#	Article	IF	Citations
7 3	Dielectric properties of mono- and bilayers determined from first principles. , 2017, , .		4
74	Channel Length Scaling Limit for LDMOS Field-Effect Transistors: Semi-classical and Quantum Analysis. , 2020, , .		4
75	Zener tunnelling in graphene based semiconductors – the k·p method. Journal of Physics: Conference Series, 2009, 193, 012111.	0.3	3
76	Determining bound states in a semiconductor device with contacts using a nonlinear eigenvalue solver. Journal of Computational Electronics, 2014, 13, 753-762.	1.3	3
77	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-k on Si <italic>x</italic> Selâ^' <italic>x</italic> xxXXXXXXXXXXXXXXXXXXXXXXXPart lâ€"Model Description and Validation. IEEE Transactions on Electron Devices, 2017, 64, 3786-3793.	1.6	3
78	Figure-of-Merit for Laterally Diffused MOSFETs with Rectangular and Semi-Circular Field Oxides. , $2021, , .$		3
79	Shaping the future of nanoelectronics beyond the Si roadmap with new materials and devices. Proceedings of SPIE, 2010, , .	0.8	2
80	Phonon-assisted Zener tunneling in a p–n diode silicon nanowire. Solid-State Electronics, 2013, 79, 196-200.	0.8	2
81	Quantum Confinement and Interface States in ZnO Nanocrystalline Thin-Film Transistors. IEEE Transactions on Electron Devices, 2018, 65, 1787-1795.	1.6	2
82	Importance of separating contacts from the photosensitive layer in heterojunction phototransistors. Superlattices and Microstructures, 2020, 148, 106713.	1.4	2
83	Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation. Communications Physics, 2021, 4, .	2.0	2
84	LDMOS Drift Region With Field Oxides: Figure-of-Merit Derivation and Verification. IEEE Journal of the Electron Devices Society, 2022, 10, 361-366.	1.2	2
85	Impact of passivation on the Dirac cones of 2D topological insulators. Journal of Applied Physics, 2022, 131, .	1.1	2
86	Progress on quantum transport simulation using empirical pseudopotentials., 2015,,.		1
87	Transistors performance in the sub-1 nm technology node based on one-dimensional nanomaterials. , 2015, , .		1
88	Efficient Modeling of Electron Transport with Plane Waves. , 2018, , .		1
89	Trigonal Tellurium Nanostructure Formation Energy and Band gap. , 2019, , .		1
90	First-principles Study of the Electron and Hole Mobility in Silicane. , 2019, , .		1

#	Article	IF	CITATIONS
91	Determining Electronic, Structural, Dielectric, Magnetic, and Transport Properties in Novel Electronic Materials: Using first-principles techniques. IEEE Nanotechnology Magazine, 2021, 15, 68-C3.	0.9	1
92	Modeling Contact Resistivity in Monolayer Molybdenum disulfide Edge contacts., 2021,,.		1
93	High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap. Materials Research Society Symposia Proceedings, 2009, 1194, 49.	0.1	О
94	The impact of junction angle on tunnel FETs. , 2011, , .		О
95	Impact of band non-parabolicity on the onset voltage in a nanowire tunnel field-effect transistor. , 2013, , .		О
96	Corrections to "Quantum Mechanical Performance Predictions of p-n-i-n Versus Pocketed Line Tunnel Field-Effect Transistors―[Jul 13 2128-2134]. IEEE Transactions on Electron Devices, 2013, 60, 3605-3605.	1.6	О
97	Physics of electronic transport in low-dimensionality materials for future FETs., 2015, , .		О
98	Electronâ€"Phonon Interactions. Graduate Texts in Physics, 2016, , 269-314.	0.1	O
99	Stannene: A Likely 2D Topological Insulator. Series in Materials Science and Engineering, 2016, , 379-408.	0.1	o
100	Modeling topological-insulator field-effect transistors using the Boltzmann equation. , 2016, , .		0
101	Two-dimensional topological insulator transistors as energy efficient switches robust against material and device imperfections. , 2017, , .		o
102	Carrier Transport in a Two-Dimensional Topological Insulator Nanoribbon in the Presence of Vacancy Defects , $2018, , .$		O
103	Modeling of electron transport in nanoribbon devices using Bloch waves. , 2018, , .		O
104	Ab initio modeling of few-layer dilute magnetic semiconductors. , 2021, , .		0
105	Ballistic quantum transport study of Al contacting silicane using empirical pseudopotentials., 2021,,.		0
106	Contacts to Two-dimensional Materials: Image Forces, Dielectric Environment, and Back-gate., 2022,,.		0