Satadeep Bhattacharjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610297/publications.pdf

Version: 2024-02-01

623734 434195 45 966 14 31 citations h-index g-index papers 45 45 45 1529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic disorder and Berry phase driven anomalous Hall effect in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:n .<="" 105,="" 2022,="" b,="" compound.="" heusler="" physical="" review="" td=""><td>nn32<td>nl:119n></td></td></mml:n></mml:msub></mml:mrow></mml:math>	nn 32 <td>nl:119n></td>	nl:119n>
2	Probing Photoexcited Charge Carrier Trapping and Defect Formation in Synergistic Doping of SrTiO ₃ . ACS Applied Energy Materials, 2022, 5, 1159-1168.	5.1	9
3	Electrical and magneto-transport in the 2D semiconducting MXene Ti ₂ CO ₂ . Journal of Materials Chemistry C, 2022, 10, 9062-9072.	5.5	5
4	Silicene: an excellent material for flexible electronics. Journal Physics D: Applied Physics, 2022, 55, 425301.	2.8	8
5	AMMCR: Ab initio model for mobility and conductivity calculation by using Rode Algorithm. Computer Physics Communications, 2021, 259, 107697.	7.5	8
6	Cooperation and competition between magnetism and chemisorption. Physical Chemistry Chemical Physics, 2021, 23, 3802-3809.	2.8	3
7	CINEMAS: Comprehensively INtegrated Environment for advanced MAterials Simulations. Computational Materials Science, 2021, 188, 110238.	3.0	2
8	Population analysis with Wannier orbitals. Journal of Chemical Physics, 2021, 154, 104111.	3.0	3
9	Comprehensive Studies on Steady-State and Transient Electronic Transport in In0.52Al0.48As. Journal of Electronic Materials, 2021, 50, 3819-3835.	2.2	0
10	MatScIE: An automated tool for the generation of databases of methods and parameters used in the computational materials science literature. Computational Materials Science, 2021, 192, 110325.	3.0	8
11	Tuning the Lattice Thermal Conductivity in Bismuth Telluride via <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Cr</mml:mi></mml:math> Alloying. Physical Review Applied, 2021, 15, .	3.8	7
12	Identifying the Critical Surface Descriptors for the Negative Slopes in the Adsorption Energy Scaling Relationships via Density Functional Theory and Compressed Sensing. Journal of Physical Chemistry Letters, 2021, 12, 9791-9799.	4.6	5
13	Transition metal substituted Fe ₂ P: potential candidate for MRAM application. Journal of Physics Condensed Matter, 2020, 32, 195804.	1.8	2
14	Adsorption energy scaling relation on bimetallic magnetic surfaces: role of surface magnetic moments. Physical Chemistry Chemical Physics, 2020, 22, 17960-17968.	2.8	8
15	Gallium–Boron–Phosphide (\$\$hbox {GaBP}_{2}\$\$): a new Ill–V semiconductor for photovoltaics. Journal of Materials Science, 2020, 55, 9448-9460.	3.7	5
16	Semi-classical electronic transport properties of ternary compound AlGaAs2: role of different scattering mechanisms. Journal of Physics Condensed Matter, 2020, 32, 135704.	1.8	2
17	Ab initio semi-classical electronic transport in ZnSe: the role of inelastic scattering mechanisms. Journal of Physics Condensed Matter, 2019, 31, 345901.	1.8	4
18	Inducing half metallicity with alloying in Heusler Compound CoFeMnSb. Journal of Physics Condensed Matter, 2019, 31, 335702.	1.8	2

#	Article	IF	CITATIONS
19	Evidence of ferromagnetic ground state and strong spin phonon coupling in Zr ₂ TiAl with bi-axial strain: first principles study. Journal of Physics Communications, 2019, 3, 055010.	1.2	0
20	Grasping periodic trend and rate-determining step for S-modified metals of metal sulfides deployable to produce OH via H2O2 cleavage. Applied Catalysis B: Environmental, 2019, 253, 60-68.	20.2	22
21	Van der Waals hetero-structures of 1H-MoS ₂ and N-substituted graphene for catalysis of hydrogen evolution reaction. Materials Research Express, 2019, 6, 124006.	1.6	4
22	Controlling Oxygen-Based Electrochemical Reactions through Spin Orientation. Journal of Physical Chemistry C, 2018, 122, 894-901.	3.1	14
23	Role of zero-point effects in stabilizing the ground state structure of bulk Fe ₂ P. Journal of Physics Condensed Matter, 2018, 30, 215401.	1.8	6
24	PASTA: Python Algorithms for Searching Transition stAtes. Computer Physics Communications, 2018, 233, 261-268.	7.5	15
25	Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts. Journal of Materials Chemistry A, 2017, 5, 13019-13031.	10.3	45
26	Robust NdBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material and its degradation prevention operating logic for intermediate temperature-solid oxide fuel cells. Journal of Power Sources, 2016, 331, 495-506.	7.8	37
27	An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Scientific Reports, 2016, 6, 35916.	3.3	164
28	NH3 adsorption on PtM (Fe, Co, Ni) surfaces: Cooperating effects of charge transfer, magnetic ordering and lattice strain. Chemical Physics Letters, 2016, 648, 166-169.	2.6	17
29	Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Materials, 2016, 8, e237-e237.	7.9	57
30	Electronic Structure of Double Perovskite Lu ₂ CoMnO ₆ . Advanced Science Letters, 2015, 21, 2875-2878.	0.2	0
31	Ultrafast Switching of the Electric Polarization and Magnetic Chirality in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>BiFeO</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>1718 1ml:mn>3</td><td><</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	1718 1ml:mn>3	<
32	Prediction of novel interface-driven spintronic effects. Journal of Physics Condensed Matter, 2014, 26, 315008.	1.8	13
33	Novel magnetic arrangement and structural phase transition induced by spin–lattice coupling in multiferroics. MRS Communications, 2013, 3, 213-218.	1.8	4
34	Theoretical Analysis of Inertia-like Switching in Magnets: Applications to a Synthetic Antiferromagnet. Physical Review X, 2012, 2, .	8.9	6
35	Functionalization of edge reconstructed graphene nanoribbons by H and Fe: A density functional study. Solid State Communications, 2012, 152, 1719-1724.	1.9	6
36	First principles calculations of magnetism, dielectric properties and spin–phonon coupling in double perovskite Bi2CoMnO6. Journal of Physics Condensed Matter, 2012, 24, 295901.	1.8	5

#	Article	lF	CITATIONS
37	Atomistic Spin Dynamic Method with both Damping and Moment of Inertia Effects Included from First Principles. Physical Review Letters, 2012, 108, 057204.	7.8	92
38	Electronic structure of Co-phthalocyanine calculated by GGA+U and hybrid functional methods. Chemical Physics, 2010, 377, 96-99.	1.9	22
39	Engineering Multiferroism in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaMnO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2009, 102, 117602.	7.8	183
40	First-principles study of the dielectric and dynamical properties of orthorhombic CaMnO3. Journal of Physics Condensed Matter, 2008, 20, 255229.	1.8	16
41	Temperature-dependent quasiparticle band structure of an antiferromagnetic two-layer EuTe film. Physica B: Condensed Matter, 2003, 336, 379-386.	2.7	0
42	Scaling of transition temperature and CuO2 plane buckling in the cuprate superconductors. Physica C: Superconductivity and Its Applications, 2001, 349, 89-94.	1,2	3
43	Spin polarized carrier injection into high-Tcsuperconductors: A test for the superconductivity mechanism. Physical Review B, 2000, 62, R6139-R6142.	3.2	9
44	Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum. Physical Review B, 2000, 61, 8541-8547.	3.2	80
45	Pressure induced isostructural phase transition in biskyrmion host hexagonal MnNiGa. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	2