Qiang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610188/publications.pdf

Version: 2024-02-01

64

all docs

63 1,813 25 papers citations h-index

64

docs citations

64 644
times ranked citing authors

38

g-index

#	Article	IF	CITATIONS
1	New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corrosion Science, 2022, 198, 110163.	6.6	91
2	Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. Journal of Materials Science and Technology, 2018, 34, 1076-1084.	10.7	89
3	Study on the mutual effect of La and Gd on microstructure and mechanical properties of Mg-Al-Zn extruded alloy. Journal of Alloys and Compounds, 2016, 688, 1241-1250.	5.5	66
4	Effects of samarium content on microstructure and mechanical properties of Mg–0.5Zn–0.5Zr alloy. Journal of Materials Science and Technology, 2019, 35, 1368-1377.	10.7	66
5	Microstructures and mechanical properties of a high-strength Mg-3.5Sm-0.6Zn-0.5Zr alloy. Materials Science & Science & Properties, Microstructure and Processing, 2017, 703, 97-107.	5. 6	60
6	Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature. Journal of Alloys and Compounds, 2017, 728, 404-412.	5 . 5	53
7	Effects of 1.5Âwt% samarium (Sm) addition on microstructures and tensile properties of a Mgâ~6.0Znâ~0.5Zr alloy. Journal of Alloys and Compounds, 2018, 735, 1737-1749.	5. 5	53
8	Microstructure and mechanical properties of high-performance Mg–Y–Er–Zn extruded alloy. Materials & Design, 2014, 54, 256-263.	5.1	52
9	Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy. Journal of Alloys and Compounds, 2016, 665, 240-250.	5. 5	52
10	A high-strength low-rare-earth-alloyed magnesium alloy via traditional hot-extrusion. Journal of Alloys and Compounds, 2019, 810, 151967.	5 . 5	49
11	Microstructures and tensile properties of a high-strength die-cast Mg–4Al–2RE–2Ca–0.3Mn alloy. Materials Characterization, 2016, 113, 180-188.	4.4	48
12	Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mgâ~'6.0Znâ~'0.5Zr (wt.%) alloy. Journal of Alloys and Compounds, 2019, 806, 1166-1179.	5.5	48
13	Microstructures and mechanical properties of a hot-extruded Mgâ^'8Gdâ^'3Ybâ^'1.2Znâ^'0.5Zr (wt%) alloy. Journal of Alloys and Compounds, 2019, 776, 666-678.	5.5	48
14	Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5RE based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 51-59.	5 . 6	43
15	Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. Journal of Alloys and Compounds, 2019, 795, 436-445.	5.5	43
16	Development of extruded Mg-6Er-3Y-1.5Zn-0.4Mn (wt.%) alloy with high strength at elevated temperature. Journal of Materials Science and Technology, 2019, 35, 2365-2374.	10.7	39
17	Effects of 0.5â€wt% Ce addition on microstructures and mechanical properties of a wrought Mgâ°'8Gdâ°'1.2Znâ°'0.5Zr alloy. Journal of Alloys and Compounds, 2018, 763, 120-133.	5.5	36
18	Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3Laâ^'0.3Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138725.	5 . 6	35

#	Article	IF	CITATIONS
19	The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg–4Al-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 319-326.	5.6	34
20	Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio. Journal of Magnesium and Alloys, 2021, 9, 1098-1098.	11.9	34
21	Deteriorated tensile creep resistance of a high-pressure die-cast Mg–4Al–4RE–0.3Mn alloy induced by substituting part RE with Ca. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 120-128.	5.6	32
22	Improvement on both strength and ductility of Mgâ^'Smâ^'Znâ^'Zr casting alloy via Yb addition. Journal of Alloys and Compounds, 2019, 805, 811-821.	5.5	32
23	Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy. Rare Metals, 2021, 40, 2956-2963.	7.1	31
24	Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg-Er-Y-Zn alloy containing nano-spaced stacking faults. Materials Characterization, 2019, 155, 109823.	4.4	29
25	Microstructural characterization of intermetallic phases in a solution-treated Mg–5.0Sm–0.6Zn–0.5Zr (wt%) alloy. Materials Characterization, 2018, 145, 329-336.	4.4	27
26	Microstructure and mechanical properties of a peak-aged Mg-5Y-2.5Nd-1.5Gd-0.5Zr casting alloy. Journal of Alloys and Compounds, 2018, 731, 704-713.	5.5	26
27	Coexistence of 14H and 18R-type long-period stacking ordered (LPSO) phases following a novel orientation relationship in a cast Mga 'Ala 'REa 'Zn alloy. Journal of Alloys and Compounds, 2018, 766, 902-907.	5 . 5	26
28	Multiplex intermetallic phases in a gravity die-cast Mgâ^6.0Znâ^1.5Ndâ^0.5Zr (wt%) alloy. Journal of Magnesium and Alloys, 2022, 10, 209-223.	11.9	25
29	Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents. Journal of Magnesium and Alloys, 2022, 10, 1220-1234.	11.9	25
30	Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy. Journal of Materials Science and Technology, 2020, 53, 174-184.	10.7	24
31	Structures of Al2Sm phase in a high-pressure die-cast Mg–4Al–4Sm–0.3Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 396-402.	5.6	23
32	Influence of trace Sr additions on the microstructures and the mechanical properties of Mg–Al–La-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 256-264.	5.6	22
33	Creep behavior of high-pressure die-cast Mg-4Al-4La-0.4Mn alloy under medium stresses and at intermediate temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 190-196.	5.6	22
34	Achieving high strength-ductility in a wrought Mg–9Gd–3Y–0.5Zr alloy by modifying with minor La addition. Journal of Alloys and Compounds, 2021, 884, 161062.	5.5	22
35	Microstructural evolution and aging behavior of Mg–4.5Y–2.5Nd–1.0Gd–0.5Zr alloys with different Zn additions. Rare Metals, 2021, 40, 2188-2196.	7.1	21
36	Nano-steps in long-period stacking ordered structures for ductility asymmetry of a strong-textured Mg-Gd-Zn alloy. Materials and Design, 2021, 201, 109482.	7.0	21

#	Article	IF	CITATIONS
37	Microstructures and tensile properties of Mg–Zn–(Gd)–Zr alloys extruded at various temperatures. Rare Metals, 2017, 36, 962-970.	7.1	20
38	Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg-Al-La-Ca-Mn alloy. Materials and Design, 2020, 190, 108566.	7.0	20
39	Microstructure and mechanical properties of Mg–Zn–(Nd)–Zr alloys with different extrusion processes. Rare Metals, 2016, 35, 841-849.	7.1	19
40	Thermodynamic stability of Al 11 RE 3 intermetallic compounds from first-principles calculations. Computational Materials Science, 2017, 131, 28-34.	3.0	19
41	Microstructures and mechanical properties of a high pressure die-cast Mg–4Alâ^'4Gdâ^'0.3Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138254.	5.6	19
42	Interfacial precipitation in $\{10 < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> < mml:mover accent="true"> < mml:mn>1 < /mml:mn> < mml:mo>\hat{A}^- < /mml:mo> < /mml:mover> < /mml:math>2 \ twin boundaries of a Mg-Gd-Zn-Zr alloy. Journal of Materials Science and Technology, 2021, 93, 103-109.$	10.7	19
43	Microstructures, mechanical properties and creep behavior of a Mgâʾʾ3Ybâʾʾ0.6Znâʾʾ0.4Zr casting alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 360-368.	5.6	18
44	Microstructures and mechanical properties of a Mg–9Gdâ-'3Yâ-'0.6Znâ-'0.4Zr (wt.%) alloy modified by Y-rich misch metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140609.	5.6	18
45	Atomic study on phase transformation of the strengthening phase in a die-casting Mg–Al–La alloy via an intermediate phase. Materials and Design, 2021, 208, 109904.	7.0	18
46	Microstructures and tensile properties of Mg–4Al–4La–0.4Mn–xB (x=0, 0.01, 0.02, 0.03) alloy. Journal of Alloys and Compounds, 2013, 572, 129-136.	5.5	17
47	Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg–Gdâ"Sm–Zr extruded alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142264.	5.6	16
48	Effects of substitution of Nd in a sand-cast Mg-2.5Nd-0.6Zn-0.5Zr alloy with x wt.% Sm (x \hat{A} = \hat{A} 2.5, 4, and) Tj ETQ	q04.80 rgE	BT 19verlock
49	Microstructures and mechanical properties of a hot-extruded Mgâ^'8Znâ^'6Alâ^'1Gd (wt%) alloy. Journal of Alloys and Compounds, 2022, 904, 164040.	5.5	15
50	Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg–4Al–4RE–0.3Mn alloy. Materials Characterization, 2017, 132, 381-387.	4.4	14
51	Influence of various Yb additions on microstructures of a casting Mgâ^'8Gdâ^'1.2Znâ^'0.5Zr alloy. Journal of Alloys and Compounds, 2019, 789, 720-729.	5.5	14
52	Microstructures and mechanical properties of a hot-extruded Mgâ^'8Hoâ^'0.6Znâ^'0.5Zr alloy. Journal of Alloys and Compounds, 2019, 774, 926-938.	5.5	14
53	Microstructural evolution of the as-cast and the peak-aged Mg–xYb–0.5Zn–0.4Zr (xÂ=Â0.5, 1, 2, and) Tj E1	[Q _q] 1 0.7	784314 rgBT 13
54	Abnormal creep stress exponents in a high-pressure die casting Mg–Alâ^'RE alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142203.	5.6	13

#	Article	IF	CITATIONS
55	The types and structures of the intermetallic phases in a cast Mgâ^'4Alâ^'15Gdâ^'4Yâ^'1Zn alloy. Journal of Alloys and Compounds, 2018, 731, 612-619.	5.5	11
56	Detailed Structures and Formation Mechanisms of Well-Known Al10RE2Mn7 Phase in Die-Cast Mg–4Al–4RE–0.3Mn Alloy. Acta Metallurgica Sinica (English Letters), 2019, 32, 178-186.	2.9	11
57	Development of Hot-Extruded Mg–RE–Zn Alloy Bar with High Mechanical Properties. Materials, 2019, 12, 1722.	2.9	10
58	Complex internal faults of MgZn2 in Mg Zn binary alloy. Materials Characterization, 2020, 169, 110659.	4.4	9
59	\hat{l}^2 -CuGaO2: a ferroelectric semiconductor with narrow band gap as degradation catalyst for wastewater environmental remediation. Rare Metals, 2022, 41, 972-981.	7.1	7
60	Crystallographic orientation relationships between the aggregated intermetallic phases in a casting Mg-Ag-Al alloy. Materials and Design, 2020, 190, 108561.	7.0	6
61	Characterizations on the instantaneously formed Ni-containing intermetallics in magnesium alloys. Journal of Magnesium and Alloys, 2023, 11, 2991-2998.	11.9	5
62	Effect of electron doping on the magnetic properties and electronic structures of Ba2MnMoO6. Journal of Alloys and Compounds, 2019, 774, 618-624.	5.5	4
63	Interphase precipitation in an Ag-modified Mg-Al-La casting alloy. Materials Characterization, 2020, 161, 110144.	4.4	2