Hui Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5610153/publications.pdf

Version: 2024-02-01

430754 552653 42 773 18 26 citations h-index g-index papers 42 42 42 1084 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Bottlebrush Polymers Based on RAFT and the "C1―Polymerization Method: Controlled Synthesis and Application in Anticancer Drug Delivery. ACS Macro Letters, 2022, 11, 179-185.	2.3	18
2	Synthesis of Optically Active Helical Polycarbenes through Helix-Sense-Selective Polymerization Strategy and Their Application in Chiral Separation. ACS Macro Letters, 2022, 11, 785-791.	2.3	9
3	Design and synthesis of binuclear vanadium catalysts for copolymerization of ethylene and polar monomers. Polymer Chemistry, 2022, 13, 3876-3881.	1.9	6
4	Highly 2,3-selective polymerization of phenylallene and its derivatives by vanadium complexes. Polymer Chemistry, 2021, 12, 4244-4252.	1.9	4
5	POSS-based starlike hybrid helical poly(phenyl isocyanide)s: their synthesis, self-assembly, and enantioselective crystallization ability. Polymer Chemistry, 2021, 12, 3917-3924.	1.9	11
6	Synthesis of Cyclic Polyolefin: <scp>Ringâ€Opening</scp> Metathesis Polymerization by Binuclear Vanadium Complexes ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1181-1187.	2.6	10
7	Chiral Recognition and Resolution Based on Helical Polymers. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1521-1527.	2.0	31
8	Recent Advances in Polyallenes: Preparation, Selfâ€Assembly, and Stimuliâ€Responsiveness. Chemistry - an Asian Journal, 2021, 16, 3864-3872.	1.7	8
9	Inducing enantioselective crystallization with and selfâ€assembly of starâ€shaped hybrid polymers prepared via "grafting to―strategy. Chirality, 2021, , .	1.3	1
10	Thermo- and redox-responsive dumbbell-shaped copolymers: from structure design to the LCST–UCST transition. Polymer Chemistry, 2020, 11, 830-842.	1.9	6
11	Self-assembly and fluorescence emission of UV-responsive azobenzene-containing helical poly(phenyl) Tj ETQq1 1	0.784314 1.9	rgBT /Ov <mark>eri</mark>
12	Synthesis of Dendrimerâ€Like Helical Poly(Phenyl Isocyanide)s Using Airâ€Stable Palladium Complexes with Double Arms. Macromolecular Chemistry and Physics, 2020, 221, 2000362.	1.1	3
13	Controlled Synthesis of Densely Grafted Bottlebrushes That Bear Helical Polyisocyanide Side Chains on Polyisocyanide Backbones and Exhibit Greatly Increased Viscosity. Macromolecules, 2020, 53, 3224-3233.	2.2	22
14	Enhanced laser marking of polypropylene induced by "core-shell―ATO@PI laser-sensitive composite. Polymer Degradation and Stability, 2019, 167, 77-85.	2.7	22
15	Inhibitory effects of CulnS2 and CdTe nanoparticles on macrophage cytokine production and phagocytosis in vitro. Enzyme and Microbial Technology, 2019, 127, 50-57.	1.6	11
16	Facile Synthesis of Helical Rod–Coil Block Polymers by the Combination of ATRP and Pd(II)â€Initiated Isocyanides Polymerizations. Macromolecular Chemistry and Physics, 2019, 220, 1800574.	1.1	4
17	Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst. Chinese Journal of Polymer Science (English Edition), 2018, 36, 799-804.	2.0	10
18	Polymerization Amplified Stereoselectivity (PASS) of Asymmetric Michael Addition Reaction and Aldol Reaction Catalyzed by Helical Poly(phenyl isocyanide) Bearing Secondary Amine Pendants. Macromolecules, 2018, 51, 9547-9554.	2.2	30

#	Article	IF	CITATIONS
19	A Facile Synthetic Route to Multifunctional Poly(3-hexylthiophene)- <i>b</i> -poly(phenyl isocyanide) Copolymers: From Aggregation-Induced Emission to Controlled Helicity. Macromolecules, 2018, 51, 7546-7555.	2.2	25
20	UV light- and thermo-responsive supramolecular aggregates with tunable morphologies from the inclusion complexation of dendritic/linear polymers. Chemical Communications, 2017, 53, 2463-2466.	2.2	27
21	Triple stimuli-responsive supramolecular assemblies based on host-guest inclusion complexation between β-cyclodextrin and azobenzene. European Polymer Journal, 2017, 91, 396-407.	2.6	29
22	UV light- and thermo-responsive hierarchical assemblies based on the inclusion complexation of \hat{l}^2 -cyclodextrin and azobenzene. Polymer Chemistry, 2017, 8, 661-665.	1.9	27
23	Functional micelles formed from glucose-, thermo- and pH-triple responsive copolymers for controlled release. Polymer Chemistry, 2017, 8, 4869-4877.	1.9	15
24	Synthesis and properties of CO2-responsive copolymer by the combination of reversible addition-fragmentation chain transfer polymerization and click chemistry. Polymer Bulletin, 2016, 73, 2199-2210.	1.7	7
25	Amphiphilic graft copolymers with ethyl cellulose backbone: Synthesis, self-assembly and tunable temperature–CO2 response. Carbohydrate Polymers, 2016, 136, 216-223.	5.1	24
26	CO ₂ - and thermo-responsive vesicles: from expansion–contraction transformation to vesicles-micelles transition. Polymer Chemistry, 2015, 6, 2457-2465.	1.9	26
27	Amphiphilic block copolymer terminated with pyrene group: from switchable CO ₂ -temperature dual responses to tunable fluorescence. RSC Advances, 2015, 5, 13145-13152.	1.7	20
28	Thermo- and glucose-responsive micelles self-assembled from phenylborate ester-containing brush block copolymer for controlled release of insulin at physiological pH. RSC Advances, 2015, 5, 80264-80268.	1.7	12
29	Temperature- and redox-responsive magnetic complex micelles for controlled drug release. Journal of Materials Chemistry B, 2015, 3, 260-269.	2.9	45
30	Synthesis, Selfâ€Assembly, and Multiâ€Stimuli Responses of a Supramolecular Block Copolymer. Macromolecular Rapid Communications, 2014, 35, 1776-1781.	2.0	13
31	Formation–dissociation of glucose, pH and redox triply responsive micelles and controlled release of insulin. Polymer Chemistry, 2014, 5, 3968.	1.9	33
32	Preparation of POSS-poly(É)-caprolactone)- \hat{l}^2 -cyclodextrin/Fe3O4 hybrid magnetic micelles for removal of bisphenol A from water. Carbohydrate Polymers, 2014, 113, 353-361.	5.1	22
33	Synthesis, Selfâ€Assembly, and Properties of Homoarm and Heteroarm Starâ€Shaped Inorganic–Organic Hybrid Polymers with a POSS Core. Macromolecular Chemistry and Physics, 2013, 214, 1580-1589.	1.1	18
34	Tunable thermo-, pH- and light-responsive copolymer micelles. Polymer Chemistry, 2013, 4, 3934.	1.9	23
35	Environment-induced nanostructural dynamical-change based on supramolecular self-assembly of cyclodextrin and star-shaped poly(ethyleneÂoxide) with polyhedral oligomeric silsesquioxane core. Polymer, 2013, 54, 5374-5381.	1.8	10
36	Supramolecular hydrogels from inclusion complexation of α-cyclodextrin with densely grafted chains in micelles for controlled drug and protein release. Journal of Materials Chemistry B, 2013, 1, 6235.	2.9	32

#	ARTICLE	IF	CITATION
37	pH-responsive amphiphilic H-shaped supramolecular copolymer via the inclusion complexation between \hat{l}^2 -cyclodextrin and adamantane. Polymer Bulletin, 2013, 70, 2257-2267.	1.7	3
38	Supramolecular micelles with dual temperature and redox responses for multi-controlled drug release. Polymer Chemistry, 2013, 4, 2658.	1.9	33
39	Supramolecular amphiphilic star-branched copolymer: from LCST–UCST transition to temperature–fluorescence responses. Journal of Materials Chemistry, 2012, 22, 24783.	6.7	42
40	Synthesis, crystalline morphologies, selfâ€assembly, and properties of Hâ€shaped amphiphilic dually responsive terpolymers. Journal of Polymer Science Part A, 2012, 50, 2541-2552.	2.5	13
41	Amphiphilic ethyl cellulose brush polymers with mono and dual side chains: Facile synthesis, self-assembly, and tunable temperature-pH responsivities. Polymer, 2012, 53, 956-966.	1.8	57
42	Effect of vascular endothelial growth factor and its receptor KDR on human airway smooth muscle cells proliferation. Chinese Medical Journal, 2005, 118, 591-4.	0.9	3