Xiaohua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561003/publications.pdf Version: 2024-02-01

XIAOHIIA

#	Article	IF	CITATIONS
1	Synchronization of stochastic hybrid coupled systems with multi-weights and mixed delays via aperiodically adaptive intermittent control. Nonlinear Analysis: Hybrid Systems, 2020, 35, 100819.	3.5	51
2	Synchronized stationary distribution of hybrid stochastic coupled systems with applications to coupled oscillators and a Chua's circuits network. Journal of the Franklin Institute, 2018, 355, 8743-8765.	3.4	36
3	Periodic solutions for a semi-ratio-dependent predator–prey system with nonmonotonic functional response and time delay. Nonlinear Analysis: Real World Applications, 2008, 9, 762-775.	1.7	33
4	A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion. Journal of Difference Equations and Applications, 2014, 20, 1641-1651.	1.1	30
5	A non-standard finite difference scheme for an epidemic model with vaccination. Journal of Difference Equations and Applications, 2013, 19, 179-190.	1.1	26
6	Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations. International Journal of Computer Mathematics, 2006, 83, 753-761.	1.8	21
7	Dynamics of a nonstandard finite-difference scheme for Mackey–Glass system. Journal of Mathematical Analysis and Applications, 2008, 344, 932-941.	1.0	21
8	Dynamic consistent non-standard numerical scheme for a dengue disease transmission model. Journal of Difference Equations and Applications, 2014, 20, 492-505.	1.1	19
9	Boundary control of stochastic reactionâ€diffusion systems with Markovian switching. International Journal of Robust and Nonlinear Control, 2020, 30, 4129-4148.	3.7	17
10	Stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Applied Mathematics and Computation, 2015, 252, 520-534.	2.2	15
11	Stability and bifurcation of a numerical discretization Mackey–Glass system. Chaos, Solitons and Fractals, 2007, 34, 383-393.	5.1	11
12	A new stable collocation method for solving a class of nonlinear fractional delay differential equations. Numerical Algorithms, 2020, 85, 1123-1153.	1.9	10
13	Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations. International Journal of Computer Mathematics, 2018, 95, 2511-2524.	1.8	9
14	A spectral collocation method for nonlinear fractional initial value problems with a variable-order fractional derivative. Computational and Applied Mathematics, 2019, 38, 1.	2.2	9
15	Local Hopf bifurcation and global existence of periodic solutions in a kind of physiological system. Nonlinear Analysis: Real World Applications, 2007, 8, 1459-1471.	1.7	8
16	Stability and Stabilization of Impulsive Stochastic Delay Differential Equations. Mathematical Problems in Engineering, 2012, 2012, 1-16.	1.1	8
17	Razumikhin method to global exponential stability for coupled neutral stochastic delayed systems on networks. Mathematical Methods in the Applied Sciences, 2017, 40, 5490-5501.	2.3	8
18	The Magnus Expansion for Stochastic Differential Equations. Journal of Nonlinear Science, 2020, 30, 419-447.	2.1	8

Χιαοήμα

#	Article	IF	CITATIONS
19	Global Stability of Multigroup Dengue Disease Transmission Model. Journal of Applied Mathematics, 2012, 2012, 1-11.	0.9	7
20	Exact Finite Difference Scheme and Nonstandard Finite Difference Scheme for Burgers and Burgers-Fisher Equations. Journal of Applied Mathematics, 2014, 2014, 1-12.	0.9	7
21	Stability and Stabilization of Impulsive Stochastic Delay Difference Equations. Discrete Dynamics in Nature and Society, 2010, 2010, 1-15.	0.9	6
22	Unconditionally positivity and boundedness preserving schemes for a FitzHugh–Nagumo equation. International Journal of Computer Mathematics, 2015, 92, 2198-2218.	1.8	6
23	An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data. Ocean Dynamics, 2017, 67, 1523-1533.	2.2	6
24	An evaluation of sea surface height assimilation using along-track and gridded products based on the Regional Ocean Modeling System (ROMS) and the four-dimensional variational data assimilation. Acta Oceanologica Sinica, 2018, 37, 50-58.	1.0	6
25	Structure-preserving stochastic conformal exponential integrator for linearly damped stochastic differential equations. Calcolo, 2019, 56, 1.	1.1	6
26	The Neimark-Sacker bifurcation of <i>x</i> _{<i>n</i>+1} =δ <i>x</i> _{<i>n-</i>2} + <i>x</i> _{<i>n</i>-3} <i>A</i> Journal of Difference Equations and Applications, 2009, 15, 775-784.	+ <i>xk,‡i><s< td=""><td>ubxi>n</td></s<></i> -3	ubxi>n
27	A class of new Magnus-type methods for semi-linear non-commutative Itô stochastic differential equations. Numerical Algorithms, 0, , 1.	1.9	4
28	Stability and bifurcation of numerical discretization of a second-order delay differential equation with negative feedback∆. Chaos, Solitons and Fractals, 2008, 35, 795-807.	5.1	3
29	Existence and convergence of Neimark–Sacker bifurcation for delay differential equations using Runge–Kutta methods. International Journal of Computer Mathematics, 2011, 88, 97-109.	1.8	3
30	A graph-theoretic approach to exponential stability of stochastic BAM neural networks with time-varying delays. Neural Computing and Applications, 2016, 27, 2055-2063.	5.6	3
31	On input-to-state stability for stochastic multi-group models with multi-dispersal. Applicable Analysis, 2017, 96, 2800-2817.	1.3	3
32	Stabilization of stochastic Markovian switching systems on networks with multilinks based on aperiodically intermittent control: A new differential inequality technique. International Journal of Robust and Nonlinear Control, 2020, 30, 373-396.	3.7	3
33	Global exponential stability of multi-group models with multiple dispersal and stochastic perturbation based on graph-theoretic approach. Filomat, 2017, 31, 5125-5138.	0.5	3
34	Convergence Aspects of Step-Parallel Iteration of Runge-Kutta Methods for Delay Differential Equations. BIT Numerical Mathematics, 2002, 42, 508-518.	2.0	3
35	Implicit Runge–Kutta methods based on Radau quadrature formula. International Journal of Computer Mathematics, 2009, 86, 1394-1404.	1.8	2
36	Survival Analysis of a Nonautonomous Logistic Model with Stochastic Perturbation. Journal of Applied Mathematics, 2012, 2012, 1-21.	0.9	2

Χιαοήμα

#	Article	IF	CITATIONS
37	Permanence and Extinction of a Stochastic Delay Logistic Model with Jumps. Mathematical Problems in Engineering, 2014, 2014, 1-8.	1.1	2
38	Persistence and extinction of a stochastic Gilpin-Ayala model with jumps. Mathematical Methods in the Applied Sciences, 2015, 38, 1200-1211.	2.3	2
39	A graph-theoretic approach to exponential stability of BAM neural networks with delays and reaction-diffusion. Applicable Analysis, 2015, 94, 2037-2056.	1.3	2
40	A nonâ€standard finite difference scheme for an advectionâ€diffusionâ€reaction equation. Mathematical Methods in the Applied Sciences, 2015, 38, 3308-3321.	2.3	2
41	Multi-symplectic variational integrators for the Gross–Pitaevskii equations in BEC. Applied Mathematics Letters, 2016, 60, 120-125.	2.7	2
42	Conservative difference scheme for fractional Zakharov system and convergence analysis. International Journal of Computer Mathematics, 2021, 98, 1474-1494.	1.8	2
43	A stable minimal search method for solving multi-order fractional differential equations based on reproducing kernel space. Numerical Algorithms, 2021, 87, 1707-1727.	1.9	2
44	A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets. Journal of Applied Mathematics and Computing, 2022, 68, 1467-1483.	2.5	2
45	Numerical bifurcation of a delayed diffusive foodâ€kimited model with Dirichlet boundary condition. Mathematical Methods in the Applied Sciences, 2015, 38, 2888-2900.	2.3	1
46	Boundedness of Stochastic Delay Differential Systems with Impulsive Control and Impulsive Disturbance. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	1
47	An Efficient T-S Assimilation Strategy Based on the Developed Argo-Extending Algorithm. Advances in Meteorology, 2017, 2017, 1-9.	1.6	1
48	Dissipativity of Î,-methods for a class of advection–reaction–diffusion equations with both fixed and distributed delays. International Journal of Computer Mathematics, 2018, 95, 1672-1687.	1.8	1
49	A compact ADI Crank–Nicolson difference scheme for the two-dimensional time fractional subdiffusion equation. International Journal of Computer Mathematics, 2018, 95, 2525-2538.	1.8	1
50	An <i>hp</i> -version spectral collocation method for multi-term nonlinear fractional initial value problems with variable-order fractional derivatives. International Journal of Computer Mathematics, 2021, 98, 975-998.	1.8	1
51	The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations. Journal of Applied Mathematics and Computing, 2021, 66, 439-463.	2.5	1
52	Convergence analysis of the hp-version spectral collocation method for a class of nonlinear variable-order fractional differential equations. Applied Numerical Mathematics, 2021, 170, 269-297.	2.1	1
53	Dynamics of a Nonstandard Finite-Difference Scheme for a Limit Cycle Oscillator with Delayed Feedback. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	0
54	A spectral collocation method for nonlinear fractional initial value problems with nonsmooth solutions. Mathematical Methods in the Applied Sciences, 2021, 44, 1185-1206.	2.3	0