Qiang Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609975/publications.pdf

Version: 2024-02-01

30	1,432	15	29
papers	citations	h-index	g-index
31	31	31	1650 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. Advances in Biochemical Engineering/Biotechnology, 2022, , 91-126.	1.1	1
2	Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1. Applied Microbiology and Biotechnology, 2022, 106, 3191-3199.	3.6	3
3	Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnology Advances, 2022, 59, 107954.	11.7	16
4	Metabolic Engineering of <i>Pseudomonas chlororaphis</i> for <i>De Novo</i> Production of Iodinin from Glycerol. ACS Sustainable Chemistry and Engineering, 2022, 10, 9194-9204.	6.7	5
5	Biobutanol production from cassava waste residue using <i>Clostridium</i> sp. AS3 in batch culture fermentation. Biofuels, 2021, 12, 1259-1266.	2.4	11
6	Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass., 2021,, 229-243.		0
7	Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae. Biotechnology for Biofuels, 2021, 14, 26.	6.2	9
8	Year-Round Storage Operation of Three Major Agricultural Crop Residue Biomasses by Performing Dry Acid Pretreatment at Regional Collection Depots. ACS Sustainable Chemistry and Engineering, 2021, 9, 4722-4734.	6.7	10
9	Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping. Biotechnology for Biofuels, 2021, 14, 162.	6.2	34
10	Exploration of an Efficient Electroporation System for Heterologous Gene Expression in the Genome of Methanotroph. Frontiers in Microbiology, 2021, 12, 717033.	3.5	6
11	Recombinant cyanobacteria cultured in CO2 and seawater as feedstock for coproduction of acetoin and succinate by engineered Enterobacter cloacae. Journal of CO2 Utilization, 2021, 52, 101683.	6.8	1
12	Oneâ€pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation. ChemCatChem, 2020, 12, 6191-6195.	3.7	11
13	From nature to nurture: Essence and methods to isolate robust methanotrophic bacteria. Synthetic and Systems Biotechnology, 2020, 5, 173-178.	3.7	8
14	Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catalysis, 2020, 10, 8277-8284.	11.2	41
15	Empowering a Methanol-Dependent Escherichia coli via Adaptive Evolution Using a High-Throughput Microbial Microdroplet Culture System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570.	4.1	13
16	Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochemical Engineering Journal, 2020, 158, 107500.	3.6	25
17	Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq. Frontiers in Bioengineering and Biotechnology, 2020, 8, 263.	4.1	6
18	Application of an in situ CO2–bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. Biotechnology for Biofuels, 2019, 12, 184.	6.2	24

#	Article	IF	CITATIONS
19	Enhanced microbial lipid production by <i>Cryptococcus albidus</i> in theÂhigh-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1045-1051.	3.0	19
20	Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnology for Biofuels, 2018, 11, 129.	6.2	38
21	A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Conversion and Management, 2017, 140, 62-70.	9.2	54
22	<i>Zymomonas mobilis</i> as a model system for production of biofuels and biochemicals. Microbial Biotechnology, 2016, 9, 699-717.	4.2	169
23	Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnology for Biofuels, 2016, 9, 130.	6.2	127
24	Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess and Biosystems Engineering, 2015, 38, 691-700.	3.4	100
25	Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnology Journal, 2014, 9, 1536-1546.	3.5	50
26	Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnology Advances, 2014, 32, 596-614.	11.7	255
27	Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 2011, 34, 419-431.	3.4	47
28	The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 2011, 102, 2695-2701.	9.6	252
29	Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnology and Bioprocess Engineering, 2011, 16, 482-487.	2.6	88
30	Economic evaluation of off-gas recycle pressure swing adsorption (PSA) in industrial scale poly(3-hydroxybutyrate) fermentation. Biotechnology and Bioprocess Engineering, 2010, 15, 905-910.	2.6	9