Irina A Udalova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609781/publications.pdf

Version: 2024-02-01

159358 214527 9,348 51 30 47 citations h-index g-index papers 53 53 53 16374 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
2	IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology, 2011, 12, 231-238.	7.0	1,068
3	Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology, 2016, 12, 472-485.	3 . 5	493
4	Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nature Medicine, 2020, 26, 1295-1306.	15.2	304
5	Co-option of Neutrophil Fates by Tissue Environments. Cell, 2020, 183, 1282-1297.e18.	13.5	246
6	IFN- \hat{l} » resolves inflammation via suppression of neutrophil infiltration and IL- $1\hat{l}^2$ production. Journal of Experimental Medicine, 2015, 212, 845-853.	4.2	194
7	Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nature Immunology, 2012, 13, 95-102.	7.0	188
8	Interferon- \hat{I}^2 Production via Dectin-1-Syk-IRF5 Signaling in Dendritic Cells Is Crucial for Immunity to C.Âalbicans. Immunity, 2013, 38, 1176-1186.	6.6	158
9	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	15.2	149
10	Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biology, 2011, 12, R70.	13.9	137
11	IRF5 controls both acute and chronic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11001-11006.	3.3	125
12	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
13	Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation, 2021, 144, 961-982.	1.6	109
14	IRF5 Is a Specific Marker of Inflammatory Macrophages <i>In Vivo</i> . Mediators of Inflammation, 2013, 2013, 1-9.	1.4	103
15	IRF5 is required for late-phase TNF secretion by human dendritic cells. Blood, 2010, 115, 4421-4430.	0.6	99
16	Expression and Immune Function of Tenascin-C. Critical Reviews in Immunology, 2011, 31, 115-145.	1.0	98
17	IRF5:RelA Interaction Targets Inflammatory Genes in Macrophages. Cell Reports, 2014, 8, 1308-1317.	2.9	94
18	Distinct transcription factor networks control neutrophil-driven inflammation. Nature Immunology, 2021, 22, 1093-1106.	7.0	83

#	Article	IF	Citations
19	Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight, 2017, 2, .	2.3	7 5
20	Interferon Regulatory Factor 5 Controls Necrotic Core Formation in Atherosclerotic Lesions by Impairing Efferocytosis. Circulation, 2017, 136, 1140-1154.	1.6	74
21	Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Translational Research, 2016, 167, 167-182.	2.2	70
22	Advances and challenges in targeting IRF5, a key regulator of inflammation. FEBS Journal, 2019, 286, 1624-1637.	2.2	62
23	KAP1/TRIM28: An inhibitor of IRF5 function in inflammatory macrophages. Immunobiology, 2012, 217, 1315-1324.	0.8	61
24	ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies. JCI Insight, 2020, 5, .	2.3	53
25	Anti-TNF Therapy. Microbiology Spectrum, 2016, 4, .	1.2	50
26	IRF5 guides monocytes toward an inflammatory CD11c $<$ sup $>+sup> macrophage phenotype and promotes intestinal inflammation. Science Immunology, 2020, 5, .$	5.6	48
27	IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans. JCI Insight, 2016, 1, e88689.	2.3	43
28	Caspase-8 promotes c-Rel–dependent inflammatory cytokine expression and resistance against <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11926-11935.	3.3	42
29	Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques. Journal of Molecular and Cellular Cardiology, 2015, 89, 168-172.	0.9	35
30	The role of neutrophils in rheumatic disease-associated vascular inflammation. Nature Reviews Rheumatology, 2022, 18, 158-170.	3 . 5	32
31	Activation and Function of Interferon Regulatory Factor 5. Journal of Interferon and Cytokine Research, 2015, 35, 71-78.	0.5	31
32	A critical role for IRF5 in regulating allergic airway inflammation. Mucosal Immunology, 2017, 10, 716-726.	2.7	31
33	Transcriptional regulation of neutrophil differentiation and function during inflammation. Journal of Leukocyte Biology, 2020, 107, 419-430.	1.5	31
34	C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis. Nature Communications, 2022, 13, 215.	5.8	28
35	Interferon regulatory factor-5-dependent CD11c+ macrophages contribute to the formation of rupture–prone atherosclerotic plaques. European Heart Journal, 2022, 43, 1864-1877.	1.0	27
36	Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovascular Research, 2023, 119, 236-251.	1.8	22

#	Article	IF	CITATIONS
37	IRF5 Promotes Influenza Virus-Induced Inflammatory Responses in Human Induced Pluripotent Stem Cell-Derived Myeloid Cells and Murine Models. Journal of Virology, 2020, 94, .	1.5	20
38	Diverse mechanisms of IRF5 action in inflammatory responses. International Journal of Biochemistry and Cell Biology, 2018, 99, 38-42.	1.2	19
39	Cross-species Analysis Reveals Evolving and Conserved Features of the Nuclear Factor κB (NF-κB) Proteins. Journal of Biological Chemistry, 2013, 288, 11546-11554.	1.6	15
40	Antibody response to homologous epitopes of Epstein-Barr virus, Mycobacterium avium subsp. paratuberculosis and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis. Journal of Translational Autoimmunity, 2020, 3, 100048.	2.0	15
41	Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nature Communications, 2021, 12, 6702.	5.8	13
42	Regional specialization of macrophages along the gastrointestinal tract. Trends in Immunology, 2021, 42, 795-806.	2.9	11
43	IRF5 regulates airway macrophage metabolic responses. Clinical and Experimental Immunology, 2021, 204, 134-143.	1.1	9
44	Deuterated Arachidonic Acid Ameliorates Lipopolysaccharide-Induced Lung Damage in Mice. Antioxidants, 2022, 11, 681.	2.2	5
45	Anti-TNF Therapy. , 2017, , 637-648.		4
46	Synovial single-cell heterogeneity, zonation, and interactions: a patchwork of effectors in arthritis. Rheumatology, 2021, , .	0.9	4
47	Macrophage commonalities across tissues and inflammation. Nature Reviews Immunology, 2022, 22, 2-2.	10.6	4
48	The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation. Journal of Immunology, 2021, 206, 1515-1527.	0.4	3
49	Aâ€Diabetes-induced innate immune memory drives inflammation and atherosclerosis, despite restoration of normoglycaemia. , 2018, , .		1
50	Multiparametric Analysis of Myeloid Populations by Flow Cytometry. Methods in Molecular Biology, 2018, 1745, 113-124.	0.4	0
51	Aâ€Endothelial cell derived extracellular vesicles mediate neutrophil deployment from the spleen following acute myocardial infarction. , 2019, , .		O