Andreas Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609758/publications.pdf

Version: 2024-02-01

10389 29157 16,084 321 72 104 citations h-index g-index papers 338 338 338 17849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CDC50A is required for aminophospholipid transport and cell fusion in mouse C2C12 myoblasts. Journal of Cell Science, 2022, 135, .	2.0	10
2	Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Selfâ€Healing, and Magnetic Response Behaviors. Advanced Materials, 2022, 34, e2106208.	21.0	19
3	Visualization of Marek's Disease Virus Genomes in Living Cells during Lytic Replication and Latency. Viruses, 2022, 14, 287.	3.3	1
4	The Mechanochemical Synthesis and Activation of Carbonâ€Rich <i>Ï€</i> onjugated Materials. Advanced Science, 2022, 9, e2105497.	11.2	28
5	Charge Matters: Mutations in Omicron Variant Favor Binding to Cells. ChemBioChem, 2022, 23, e202100681.	2.6	62
6	Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
7	Microgels as drug carriers for sonopharmacology. Journal of Polymer Science, 2022, 60, 1864-1870.	3.8	18
8	Structural and functional analysis of the roles of Influenza C virus membrane proteins in assembly and budding. Journal of Biological Chemistry, 2022, , 101727.	3.4	1
9	Characterization of Hantavirus N Protein Intracellular Dynamics and Localization. Viruses, 2022, 14, 457.	3.3	3
10	Mechanoâ€Nanoswitches for Ultrasoundâ€Controlled Drug Activation. Advanced Science, 2022, 9, e2104696.	11.2	20
11	Lateâ \in Stage Modification of Aminoglycoside Antibiotics Overcomes Bacterial Resistance Mediated by APH(3â \in $^{\text{M}}$) Kinases. Chemistry - A European Journal, 2022, 28, .	3.3	5
12	lonic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life. Advanced Science, 2022, 9, e2200617.	11.2	6
13	Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Letters, 2022, 11, 15-19.	4.8	12
14	Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjugate Chemistry, 2022, 33, 1269-1278.	3.6	1
15	Force ahead: Emerging Applications and Opportunities of Polymer Mechanochemistry. ACS Polymers Au, 2022, 2, 208-212.	4.1	15
16	Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release. Chemical Science, 2021, 12, 1668-1674.	7.4	61
17	Reversibly Photoâ€Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie - International Edition, 2021, 60, 3222-3228.	13.8	25
18	Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound. Angewandte Chemie - International Edition, 2021, 60, 1493-1497.	13.8	31

#	Article	IF	CITATIONS
19	Photochemical control of bacterial gene expression based on <i>trans</i> encoded genetic switches. Chemical Science, 2021, 12, 2646-2654.	7.4	6
20	Reversible regulation of metallo-base-pair interactions for DNA dehybridization by ultrasound. Chemical Communications, 2021, 57, 7438-7440.	4.1	12
21	Mechanochemical bond scission for the activation of drugs. Nature Chemistry, 2021, 13, 131-139.	13.6	152
22	Spontaneous binding of potential COVID-19 drugs (Camostat and Nafamostat) to human serine protease TMPRSS2. Computational and Structural Biotechnology Journal, 2021, 19, 467-476.	4.1	25
23	Improved Treatment Options for Glaucoma with Brimonidine-Loaded Lipid DNA Nanoparticles. ACS Applied Materials & Dr. Interfaces, 2021, 13, 9445-9456.	8.0	24
24	An Artificial Phaseâ€Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. Angewandte Chemie - International Edition, 2021, 60, 12082-12089.	13.8	48
25	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie - International Edition, 2021, 60, 23687-23694.	13.8	78
26	Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms. Advanced Materials Interfaces, 2021, 8, 2100285.	3.7	17
27	Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angewandte Chemie - International Edition, 2021, 60, 14707-14714.	13.8	35
28	Ultra-strong bio-glue from genetically engineered polypeptides. Nature Communications, 2021, 12, 3613.	12.8	104
29	Dynamic DNA-based biomaterials interacting with external, macroscopic, and molecular stimuli. Materials Today, 2021, 49, 378-390.	14.2	8
30	Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nature Communications, 2021, 12, 3796.	12.8	42
31	Characterization of Fluorescent Proteins with Intramolecular Photostabilization**. ChemBioChem, 2021, 22, 3283-3291.	2.6	6
32	The Mechanochemical Release of Naphthalimide Fluorophores from \hat{l}^2 -Carbonate and \hat{l}^2 -Carbamate Disulfide-Centered Polymers. CCS Chemistry, 2021, 3, 2333-2344.	7.8	23
33	Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. Journal of Medicinal Chemistry, 2021, 64, 12774-12789.	6.4	11
34	Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem I in Biophotovoltaic Devices. Langmuir, 2021, 37, 11465-11473.	3.5	9
35	Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials, 2021, 277, 121081.	11.4	9
36	Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. Journal of the American Chemical Society, 2021, 143, 20529-20545.	13.7	16

3

#	Article	IF	Citations
37	Multiplexed sensing of biomolecules with optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
38	Fabrication and Mechanical Properties of Engineered Proteinâ€Based Adhesives and Fibers. Advanced Materials, 2020, 32, e1906360.	21.0	97
39	DNA hybridization as a general method to enhance the cellular uptake of nanostructures. Nanoscale, 2020, 12, 21299-21305.	5.6	5
40	De novo rational design of a freestanding, supercharged polypeptide, proton-conducting membrane. Science Advances, 2020, 6, eabc0810.	10.3	24
41	Aptamer protective groups tolerate different reagents and reactions for regioselective modification of neomycin B. Organic and Biomolecular Chemistry, 2020, 18, 9606-9610.	2.8	2
42	Toward Drug Release Using Polymer Mechanochemical Disulfide Scission. Journal of the American Chemical Society, 2020, 142, 14725-14732.	13.7	72
43	Selective flexible packaging pathways of the segmented genome of influenza A virus. Nature Communications, 2020, 11 , 4355.	12.8	26
44	Macropinocytosis and Clathrin-Dependent Endocytosis Play Pivotal Roles for the Infectious Entry of Puumala Virus. Journal of Virology, 2020, 94, .	3.4	14
45	Next Generation Salivary Lubrication Enhancer Derived from Recombinant Supercharged Polypeptides for Xerostomia. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34524-34535.	8.0	13
46	Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 337.	3.7	20
47	Quantification of Multivalent Interactions between Sialic Acid and Influenza A Virus Spike Proteins by Single-Molecule Force Spectroscopy. Journal of the American Chemical Society, 2020, 142, 12181-12192.	13.7	43
48	Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angewandte Chemie, 2020, 132, 12517-12522.	2.0	5
49	Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules, 2020, 10, 871.	4.0	9
50	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie, 2020, 132, 17403-17408.	2.0	2
51	Engineered Nearâ€Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. Advanced Materials, 2020, 32, e2000964.	21.0	58
52	Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nature Nanotechnology, 2020, 15, 373-379.	31.5	96
53	Supercharged Proteins and Polypeptides. Advanced Materials, 2020, 32, e1905309.	21.0	58
54	Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis. Journal of Lipid Research, 2020, 61, 252-266.	4.2	29

#	Article	IF	CITATIONS
55	Solventâ€Free Plasticity and Programmable Mechanical Behaviors of Engineered Proteins. Advanced Materials, 2020, 32, e1907697.	21.0	23
56	Modular and Versatile Transâ€Encoded Genetic Switches. Angewandte Chemie - International Edition, 2020, 59, 20328-20332.	13.8	2
57	Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angewandte Chemie - International Edition, 2020, 59, 12417-12422.	13.8	36
58	ColiCoords: A Python package for the analysis of bacterial fluorescence microscopy data. PLoS ONE, 2019, 14, e0217524.	2.5	15
59	Antiâ€Stokes Stress Sensing: Mechanochemical Activation of Triplet–Triplet Annihilation Photon Upconversion. Angewandte Chemie - International Edition, 2019, 58, 12919-12923.	13.8	68
60	Significant Upregulation of Alzheimer's $\hat{l}^2\hat{a}\in A$ myloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. Angewandte Chemie - International Edition, 2019, 58, 18703-18709.	13.8	36
61	Soft matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids enable immunological treatment of cancer. Journal of Controlled Release, 2019, 315, 76-84.	9.9	18
62	Antiâ€Stokesâ€Belastungsanzeige: Mechanochemische Aktivierung der Triplettâ€Triplettâ€Annihilierungâ€Photonenâ€Hochkonversion. Angewandte Chemie, 2019, 131, 13051-13055.	2.0	10
63	Electrostatically PEGylated DNA enables salt-free hybridization in water. Chemical Science, 2019, 10, 10097-10105.	7.4	9
64	Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Science Advances, 2019, 5, eaaw6264.	10.3	94
65	Surface Binding Energy Landscapes Affect Phosphodiesterase Isoform-Specific Inhibitor Selectivity. Computational and Structural Biotechnology Journal, 2019, 17, 101-109.	4.1	7
66	Mobility-Based Quantification of Multivalent Virus-Receptor Interactions: New Insights Into Influenza A Virus Binding Mode. Nano Letters, 2019, 19, 1875-1882.	9.1	60
67	On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores. Physical Chemistry Chemical Physics, 2019, 21, 3721-3733.	2.8	30
68	Inhibition of influenza virus activity by the bovine seminal plasma protein PDC-109. European Biophysics Journal, 2019, 48, 503-511.	2.2	1
69	Fast, Efficient, and Targeted Liposome Delivery Mediated by DNA Hybridization. Advanced Healthcare Materials, 2019, 8, e1900389.	7.6	14
70	DNA Nanotechnology Enters Cell Membranes. Advanced Science, 2019, 6, 1900043.	11.2	85
71	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	4.7	26
72	A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle. Scientific Reports, 2019, 9, 3343.	3.3	9

#	Article	IF	CITATIONS
73	Force Spectroscopy Shows Dynamic Binding of Influenza Hemagglutinin and Neuraminidase to Sialic Acid. Biophysical Journal, 2019, 116, 1037-1048.	0.5	33
74	Self-association and subcellular localization of Puumala hantavirus envelope proteins. Scientific Reports, 2019, 9, 707.	3.3	15
7 5	Stochastic transcription in the p53â€mediated response to <scp>DNA</scp> damage is modulated by burst frequency. Molecular Systems Biology, 2019, 15, e9068.	7.2	27
76	The kinetochore module Okp1 ^{CENPâ€Q} /Ame1 ^{CENPâ€U} is a reader for Nâ€terminal modifications on the centromeric histone Cse4 ^{CENPâ€A} . EMBO Journal, 2019, 38, .	7.8	34
77	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie - International Edition, 2018, 57, 6878-6882.	13.8	38
78	Interactions of Fullereneâ€Polyglycerol Sulfates at Viral and Cellular Interfaces. Small, 2018, 14, e1800189.	10.0	30
79	Self-Assembly of Electrostatic Cocrystals from Supercharged Fusion Peptides and Protein Cages. ACS Macro Letters, 2018, 7, 318-323.	4.8	47
80	Uptake and Localization of Aminoglycoside Antibiotics in Live Escherichia coli. Biophysical Journal, 2018, 114, 629a.	0.5	0
81	Photoswitching of DNA Hybridization Using a Molecular Motor. Journal of the American Chemical Society, 2018, 140, 5069-5076.	13.7	70
82	Lipidâ€ĐNAs as Solubilizers of <i>m</i> THPC. Chemistry - A European Journal, 2018, 24, 798-802.	3.3	5
83	DNA nanoparticles for ophthalmic drug delivery. Biomaterials, 2018, 157, 98-106.	11.4	69
84	Phage Display on the Antiâ€infective Target 1â€Deoxyâ€ <scp>d</scp> â€xyluloseâ€5â€phosphate Synthase Lead Acceptor–Substrate Competitive Peptidic Inhibitor. ChemBioChem, 2018, 19, 58-65.	s to an	8
85	Sialyl‣acNAcâ€PNAâ^™DNA concatamers by rolling circle amplification as multivalent inhibitors for Influenza A virus particles. ChemBioChem, 2018, 20, 159-165.	2.6	15
86	Exploring Rigid and Flexible Core Trivalent Sialosides for Influenza Virus Inhibition. Chemistry - A European Journal, 2018, 24, 19373-19385.	3.3	14
87	Self-Regenerating Soft Biophotovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37625-37633.	8.0	17
88	Tunneling Probability Increases with Distance in Junctions Comprising Self-Assembled Monolayers of Oligothiophenes. Journal of the American Chemical Society, 2018, 140, 15048-15055.	13.7	24
89	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie, 2018, 130, 6994-6998.	2.0	8
90	Gp41 dynamically interacts with the TCR in the immune synapse and promotes early T cell activation. Scientific Reports, 2018, 8, 9747.	3.3	8

#	Article	IF	Citations
91	Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nature Nanotechnology, 2018, 13, 849-855.	31.5	160
92	Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Scientific Reports, 2018, 8, 10634.	3.3	80
93	Performing DNA nanotechnology operations on a zebrafish. Chemical Science, 2018, 9, 7271-7276.	7.4	17
94	An Optimized Sensor Array Identifies All Natural Amino Acids. ACS Sensors, 2018, 3, 1562-1568.	7.8	51
95	Transcriptional timing and noise of yeast cell cycle regulators—a single cell and single molecule approach. Npj Systems Biology and Applications, 2018, 4, 17.	3.0	7
96	The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization. PLoS Genetics, 2018, 14, e1007189.	3.5	20
97	Cell cycle dependent changes in the plasma membrane organization of mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 350-359.	2.6	18
98	Amplification of a FRET Probe by Lipid–Water Partition for the Detection of Acid Sphingomyelinase in Live Cells. Angewandte Chemie - International Edition, 2017, 56, 2790-2794.	13.8	47
99	Functionalized Graphene as Extracellular Matrix Mimics: Toward Wellâ€Defined 2D Nanomaterials for Multivalent Virus Interactions. Advanced Functional Materials, 2017, 27, 1606477.	14.9	65
100	Influenza A Virus Virulence Depends on Two Amino Acids in the N-Terminal Domain of Its NS1 Protein To Facilitate Inhibition of the RNA-Dependent Protein Kinase PKR. Journal of Virology, 2017, 91, .	3.4	40
101	The ties that bind. Nature Nanotechnology, 2017, 12, 102-103.	31.5	3
102	Orientation and Incorporation of Photosystem I in Bioelectronics Devices Enabled by Phage Display. Advanced Science, 2017, 4, 1600393.	11.2	17
103	Ultrasensitive Detection of Oligonucleotides: Single-Walled Carbon Nanotube Transistor Assembled by DNA Block Copolymer. Journal of Nanoscience and Nanotechnology, 2017, 17, 5175-5180.	0.9	3
104	Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins. Accounts of Chemical Research, 2017, 50, 1212-1221.	15.6	31
105	Multivalent Peptide–Nanoparticle Conjugates for Influenzaâ€Virus Inhibition. Angewandte Chemie - International Edition, 2017, 56, 5931-5936.	13.8	86
106	Efficient Fusion of Liposomes by Nucleobase Quadrupleâ€Anchored DNA. Chemistry - A European Journal, 2017, 23, 9391-9396.	3.3	33
107	A Hypothesis-Free Sensor Array Discriminates Whiskies for Brand, Age, and Taste. CheM, 2017, 2, 817-824.	11.7	93
108	Accelerating chemical reactions by molecular sledding. Chemical Communications, 2017, 53, 6331-6334.	4.1	4

#	Article	IF	Citations
109	Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection inÂvitro and inÂvivo. Biomaterials, 2017, 138, 22-34.	11.4	83
110	Multivalente Peptidâ€Nanopartikelâ€Konjugate zur Hemmung des Influenzavirus. Angewandte Chemie, 2017, 129, 6025-6030.	2.0	8
111	A Fluorescent RNA Forcedâ€Intercalation Probe as a Panâ€Selective Marker for Influenzaâ€A Virus Infection. ChemBioChem, 2017, 18, 1589-1592.	2.6	9
112	Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. Journal of Virology, 2017, 91, .	3.4	38
113	Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells. Molecular and Cellular Proteomics, 2017, 16, 728-742.	3.8	13
114	Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. Journal of the American Chemical Society, 2017, 139, 16389-16397.	13.7	70
115	Role of Defects in Tuning the Electronic Properties of Monolayer WS ₂ Grown by Chemical Vapor Deposition. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700302.	2.4	4
116	Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties. Small, 2017, 13, 1701207.	10.0	32
117	A Simple Optoelectronic Tongue Discriminates Amino Acids. Chemistry - A European Journal, 2017, 23, 12471-12474.	3.3	17
118	Administration of Soft Matter Lipid-DNA Nanoparticle As the Immunostimulant via Multiple Routes of Injection in Vivo. ACS Biomaterials Science and Engineering, 2017, 3, 2054-2058.	5.2	6
119	Full-length cellular Î ² -secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization. Journal of Biological Chemistry, 2017, 292, 13258-13270.	3.4	21
120	DNA–surfactant complexes: self-assembly properties and applications. Chemical Society Reviews, 2017, 46, 5147-5172.	38.1	80
121	Mechanically and Electrically Robust Self-Assembled Monolayers for Large-Area Tunneling Junctions. Journal of Physical Chemistry C, 2017, 121, 14920-14928.	3.1	29
122	Influenza A virus nucleoprotein targets subnuclear structures. Cellular Microbiology, 2017, 19, e12679.	2.1	10
123	Modular delivery of CpG-incorporated lipid-DNA nanoparticles for spleen DC activation. Biomaterials, 2017, 115, 81-89.	11.4	44
124	Stochastic Model of Acidification, Activation of Hemagglutinin and Escape of Influenza Viruses from an Endosome. Frontiers in Physics, 2017, 5, .	2.1	15
125	Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment. Advanced Materials, 2016, 28, 2359-2366.	21.0	65
126	The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2871-2881.	2.6	19

#	Article	IF	Citations
127	Twoâ€Dimensional Mesoscaleâ€Ordered Conducting Polymers. Angewandte Chemie - International Edition, 2016, 55, 12516-12521.	13.8	89
128	Amyloid-β(1–42) Aggregation Initiates Its Cellular Uptake and Cytotoxicity. Journal of Biological Chemistry, 2016, 291, 19590-19606.	3.4	91
129	Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis. Open Biology, 2016, 6, 160136.	3.6	36
130	High Affinity Recognition of a Selected Amino Acid Epitope within a Protein by Cucurbit[8]uril Complexation. Angewandte Chemie - International Edition, 2016, 55, 14000-14004.	13.8	52
131	Lipids Activate SecA for High Affinity Binding to the SecYEG Complex. Journal of Biological Chemistry, 2016, 291, 22534-22543.	3.4	42
132	Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin. Cellular Microbiology, 2016, 18, 125-136.	2.1	9
133	Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Doping. ACS Applied Materials & Leads & Le	8.0	19
134	Controlling the volatility of the written optical state in electrochromic DNA liquid crystals. Nature Communications, 2016, 7, 11476.	12.8	39
135	Tuning Ice Nucleation with Supercharged Polypeptides. Advanced Materials, 2016, 28, 5008-5012.	21.0	59
136	Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy. Biophysical Journal, 2016, 110, 2293-2301.	0.5	36
137	Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes. Bioconjugate Chemistry, 2016, 27, 36-41.	3.6	14
138	Supramolecular micelle-based nucleoapzymes for the catalytic oxidation of dopamine to aminochrome. Chemical Communications, 2016, 52, 5561-5564.	4.1	10
139	Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. Virology, 2016, 492, 118-129.	2.4	8
140	Interaction of fluorescent phospholipids with cyclodextrins. Chemistry and Physics of Lipids, 2016, 194, 37-48.	3.2	12
141	Speeding up biomolecular interactions by molecular sledding. Chemical Science, 2016, 7, 916-920.	7.4	11
142	Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency. PLoS Computational Biology, 2016, 12, e1005075.	3.2	27
143	Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding. PLoS ONE, 2016, 11, e0159074.	2.5	25
144	Turning Cucurbit[8]uril into a Supramolecular Nanoreactor for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13007-13011.	13.8	71

#	Article	IF	Citations
145	3Dâ€Printable Antimicrobial Composite Resins. Advanced Functional Materials, 2015, 25, 6756-6767.	14.9	105
146	Sequenceâ€specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipidâ€DNA) in capillary and microfluidic electrophoretic separations. Electrophoresis, 2015, 36, 2451-2464.	2.4	4
147	Solventâ€Free Liquid Crystals and Liquids Based on Genetically Engineered Supercharged Polypeptides with High Elasticity. Advanced Materials, 2015, 27, 2459-2465.	21.0	34
148	Potential of acylated peptides to target the influenza A virus. Beilstein Journal of Organic Chemistry, 2015, 11, 589-595.	2.2	6
149	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6, 8817.	12.8	193
150	A cholesterol consensus motif is required for efficient intracellular transport and raft association of a group 2 HA from influenza virus. Biochemical Journal, 2015, 465, 305-314.	3.7	22
151	Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I. Journal of the American Chemical Society, 2015, 137, 8419-8427.	13.7	64
152	Time-controlled phagocytosis of asymmetric liposomes: Application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1985-1992.	3.3	10
153	Single-virus force spectroscopy unravels molecular details of virus infection. Integrative Biology (United Kingdom), 2015, 7, 620-632.	1.3	18
154	Solventâ€free Liquid Crystals and Liquids from DNA. Chemistry - A European Journal, 2015, 21, 4898-4903.	3.3	39
155	High-Density Noncovalent Functionalization of DNA by Electrostatic Interactions. Journal of the American Chemical Society, 2015, 137, 12884-12889.	13.7	18
156	Potential of Proapoptotic Peptides to Induce the Formation of Giant Plasma Membrane Vesicles with Lipid Domains. ChemBioChem, 2015, 16, 1288-1292.	2.6	2
157	Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. Langmuir, 2015, 31, 9410-9421.	3.5	20
158	Intramolecular photostabilization via triplet-state quenching: design principles to make organic fluorophores "self-healing― Faraday Discussions, 2015, 184, 221-235.	3.2	31
159	Alteration of Protein Levels during Influenza Virus H1N1 Infection in Host Cells: A Proteomic Survey of Host and Virus Reveals Differential Dynamics. PLoS ONE, 2014, 9, e94257.	2.5	38
160	Thermotropic liquid crystals from biomacromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18596-18600.	7.1	61
161	Dynamics of the circadian clock protein PERIOD2 in living cells. Journal of Cell Science, 2014, 127, 4322-8.	2.0	21
162	Conformationally Constrained Cyclic Peptides: Powerful Scaffolds for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2014, 53, 7599-7603.	13.8	25

#	Article	IF	Citations
163	Selfâ€Assembly of Ferromagnetic Organic–Inorganic Perovskiteâ€Like Films. Small, 2014, 10, 4912-4919.	10.0	13
164	Efficient Separation of Conjugated Polymers Using a Water Soluble Glycoprotein Matrix: From Fluorescence Materials to Light Emitting Devices. Macromolecular Bioscience, 2014, 14, 320-326.	4.1	9
165	αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e981-e989.	3.3	14
166	pH-Controlled Two-Step Uncoating of Influenza Virus. Biophysical Journal, 2014, 106, 1447-1456.	0.5	106
167	Solidâ€State Biophotovoltaic Cells Containing Photosystem I. Advanced Materials, 2014, 26, 4863-4869.	21.0	83
168	Lipophilic nucleic acids $\hat{a}\in$ " A flexible construction kit for organization and functionalization of surfaces. Advances in Colloid and Interface Science, 2014, 208, 235-251.	14.7	35
169	Receptor binding and pH stability â€" How influenza A virus hemagglutinin affects host-specific virus infection. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1153-1168.	2.6	151
170	A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotechnology, 2014, 9, 131-136.	31.5	52
171	The Power of Two: Covalent Coupling of Photostabilizers for Fluorescence Applications. Journal of Physical Chemistry Letters, 2014, 5, 3792-3798.	4.6	35
172	DNA-controlled aggregation of virus like particles – mimicking a tetherin-like mechanism. New Journal of Chemistry, 2014, 38, 5181-5185.	2.8	6
173	Carbon Nanotube Network Ambipolar Fieldâ€Effect Transistors with 10 ⁸ On/Off Ratio. Advanced Materials, 2014, 26, 5969-5975.	21.0	91
174	A Histidine Residue of the Influenza Virus Hemagglutinin Controls the pH Dependence of the Conformational Change Mediating Membrane Fusion. Journal of Virology, 2014, 88, 13189-13200.	3.4	32
175	Influenza A Matrix Protein M1 Multimerizes upon Binding to Lipid Membranes. Biophysical Journal, 2014, 107, 912-923.	0.5	62
176	Probing the Shielding Properties of Aptameric Protective Groups. Chemistry - an Asian Journal, 2014, 9, 2225-2231.	3.3	2
177	Functionalization of Fatty Acid Vesicles through Newly Synthesized Bolaamphiphile–DNA Conjugates. Bioconjugate Chemistry, 2014, 25, 1678-1688.	3.6	14
178	Nucleic Acid Chemistry in the Organic Phase: From Functionalized Oligonucleotides to DNA Side Chain Polymers. Journal of the American Chemical Society, 2014, 136, 14255-14262.	13.7	83
179	Membrane properties of cholesterol analogs with an unbranched aliphatic side chain. Chemistry and Physics of Lipids, 2014, 184, 1-6.	3.2	15
180	The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cellular Microbiology, 2014, 16, 1565-1581.	2.1	32

#	Article	IF	Citations
181	Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to the hemagglutininâ€defined budozone. FEBS Letters, 2014, 588, 1031-1036.	2.8	17
182	Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules, 2014, 15, 2019-2026.	5.4	112
183	Light‶riggered Sequence‧pecific Cargo Release from DNA Block Copolymer–Lipid Vesicles. Angewandte Chemie - International Edition, 2013, 52, 1008-1012.	13.8	78
184	Membrane bound αâ€synuclein is fully embedded in the lipid bilayer while segments with higher flexibility remain. FEBS Letters, 2013, 587, 2572-2577.	2.8	25
185	Enhancing cellular uptake of GFP via unfolded supercharged protein tags. Biomaterials, 2013, 34, 4360-4367.	11.4	32
186	Lipid domain association of influenza virus proteins detected by dynamic fluorescence microscopy techniques. Cellular Microbiology, 2013, 15, 179-189.	2.1	21
187	Semiconducting Singleâ€Walled Carbon Nanotubes on Demand by Polymer Wrapping. Advanced Materials, 2013, 25, 2948-2956.	21.0	177
188	Regioselective Diazoâ€Transfer Reaction at the C3â€Position of the 2â€Desoxystreptamine Ring of Neamine Antibiotics. Chemistry - A European Journal, 2013, 19, 9151-9154.	3.3	13
189	Drug delivery systems based on nucleic acid nanostructures. Journal of Controlled Release, 2013, 172, 467-483.	9.9	78
190	"Giant Surfactants―Created by the Fast and Efficient Functionalization of a DNA Tetrahedron with a Temperature-Responsive Polymer. ACS Nano, 2013, 7, 8561-8572.	14.6	93
191	Recombinant Supercharged Polypeptides Restore and Improve Biolubrication. Advanced Materials, 2013, 25, 3426-3431.	21.0	28
192	Structure and Dynamics of Molecular Rods in Membranes: Application of a Spin‣abeled Rod. Chemistry - A European Journal, 2013, 19, 2703-2710.	3.3	9
193	Influenza virus binds its host cell using multiple dynamic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13626-13631.	7.1	119
194	Functional relevance of transmembrane domains in membrane fusion. Biological Chemistry, 2012, 393, 1231-1245.	2.5	6
195	Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein. Journal of General Virology, 2012, 93, 282-292.	2.9	25
196	Remote Control of Lipophilic Nucleic Acids Domain Partitioning by DNA Hybridization and Enzymatic Cleavage. Journal of the American Chemical Society, 2012, 134, 20490-20497.	13.7	35
197	Modular Assembly of a Pd Catalyst within a DNA Scaffold for the Amplified Colorimetric and Fluorimetric Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2012, 51, 11894-11898.	13.8	32
198	Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications. Journal of the American Chemical Society, 2012, 134, 280-292.	13.7	47

#	Article	IF	Citations
199	PNA FIT-Probes for the Dual Color Imaging of Two Viral mRNA Targets in Influenza H1N1 Infected Live Cells. Bioconjugate Chemistry, 2012, 23, 2051-2060.	3.6	77
200	High Performance Ambipolar Fieldâ€Effect Transistor of Random Network Carbon Nanotubes. Advanced Materials, 2012, 24, 6147-6152.	21.0	109
201	Selective transformations of complex molecules are enabled by aptameric protective groups. Nature Chemistry, 2012, 4, 789-793.	13.6	56
202	DNA Block Copolymers: Functional Materials for Nanoscience and Biomedicine. Accounts of Chemical Research, 2012, 45, 1419-1430.	15.6	152
203	Mutation of a raftâ€targeting signal in the transmembrane region retards transport of influenza virus hemagglutinin through the Golgi. FEBS Letters, 2012, 586, 277-282.	2.8	14
204	Synthesis of DNA block copolymers with extended nucleic acid segments by enzymatic ligation: cut and paste large hybrid architectures. Chemical Communications, 2011, 47, 2243.	4.1	27
205	Bending and Puncturing the Influenza Lipid Envelope. Biophysical Journal, 2011, 100, 637-645.	0.5	101
206	The Pathway to Membrane Fusion through Hemifusion. Current Topics in Membranes, 2011, 68, 1-32.	0.9	13
207	Reduction-Sensitive Liposomes from a Multifunctional Lipid Conjugate and Natural Phospholipids: Reduction and Release Kinetics and Cellular Uptake. Langmuir, 2011, 27, 10820-10829.	3 . 5	63
208	New molecular rods â€" Characterization of their interaction with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2781-2788.	2.6	15
209	Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chemical Society Reviews, 2011, 40, 5745.	38.1	177
210	Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. Biochemical Journal, 2011, 437, 389-397.	3.7	52
211	Synthesis of novel amphiphilic conjugates with a biological recognition function for developing targeted triggered liposomal delivery systems. Tetrahedron, 2011, 67, 7763-7774.	1.9	10
212	De Novo Design of Supercharged, Unfolded Protein Polymers, and Their Assembly into Supramolecular Aggregates. Macromolecular Rapid Communications, 2011, 32, 186-190.	3.9	46
213	Fluorescence Imaging of Influenza H1N1 mRNA in Living Infected Cells Using Singleâ€Chromophore FITâ€PNA. Angewandte Chemie - International Edition, 2011, 50, 1931-1934.	13.8	112
214	DNA Block Copolymer Doing It All: From Selection to Selfâ€Assembly of Semiconducting Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 3206-3210.	13.8	60
215	Inhibition of Influenza Virus Activity by Multivalent Glycoarchitectures with Matched Sizes. ChemBioChem, 2011, 12, 887-895.	2.6	113
216	Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials, 2011, 32, 6333-6341.	11.4	122

#	Article	IF	Citations
217	Amphiphilic DNA Block Copolymers: Nucleic Acid-Polymer Hybrid Materials for Diagnostics and Biomedicine. Methods in Molecular Biology, 2011, 751, 239-266.	0.9	10
218	FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochemical Journal, 2010, 425, 567-573.	3.7	76
219	Tunable Hydrophobicity in DNA Micelles: Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles. Chemistry - A European Journal, 2010, 16, 12852-12859.	3.3	54
220	Nucleic Acid/Organic Polymer Hybrid Materials: Synthesis, Superstructures, and Applications. Angewandte Chemie - International Edition, 2010, 49, 8574-8587.	13.8	136
221	Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy. Macromolecular Rapid Communications, 2010, 31, 1242-1246.	3.9	7
222	Inhibition of Influenza Virus Infection by Multivalent Sialicâ€Acidâ€Functionalized Gold Nanoparticles. Small, 2010, 6, 2900-2906.	10.0	257
223	Intrinsic Cytoskeleton-Dependent Clustering of Influenza Virus M2 Protein with Hemagglutinin Assessed by FLIM-FRET. Journal of Virology, 2010, 84, 12445-12449.	3.4	28
224	Direct Visualization of Large and Protein-Free Hemifusion Diaphragms. Biophysical Journal, 2010, 98, 1192-1199.	0.5	59
225	Hemagglutinin of Influenza Virus Partitions into the Nonraft Domain of Model Membranes. Biophysical Journal, 2010, 99, 489-498.	0.5	55
226	DNA-functionalised blend micelles: mix and fix polymeric hybrid nanostructures. Chemical Communications, 2010, 46, 4935.	4.1	32
227	Virus-like Particles Templated by DNA Micelles: A General Method for Loading Virus Nanocarriers. Journal of the American Chemical Society, 2010, 132, 7834-7835.	13.7	130
228	A Fluorogenic Reaction Based on Heavy-Atom Removal for Ultrasensitive DNA Detection. Journal of the American Chemical Society, 2010, 132, 12197-12199.	13.7	46
229	Site-specific incorporation of perylene into an N-terminally modified light-harvesting complex II. Organic and Biomolecular Chemistry, 2010, 8, 4823.	2.8	6
230	Lipid Domain Specific Recruitment of Lipophilic Nucleic Acids: A Key for Switchable Functionalization of Membranes. Journal of the American Chemical Society, 2010, 132, 16066-16072.	13.7	60
231	Single-Molecule Redox Blinking of Perylene Diimide Derivatives in Water. Journal of the American Chemical Society, 2010, 132, 2404-2409.	13.7	49
232	Visualization of Lipid Domain-Specific Protein Sorting in Giant Unilamellar Vesicles. Methods in Molecular Biology, 2010, 606, 115-126.	0.9	11
233	Lateral Distribution of the Transmembrane Domain of Influenza Virus Hemagglutinin Revealed by Time-resolved Fluorescence Imaging. Journal of Biological Chemistry, 2009, 284, 15708-15716.	3.4	73
234	Myristoylation of the arterivirus E protein: the fatty acid modification is not essential for membrane association but contributes significantly to virus infectivity. Journal of General Virology, 2009, 90, 2704-2712.	2.9	16

#	Article	IF	Citations
235	The polybasic region is not essential for membrane binding of the matrix protein M1 of influenza virus. Virology, 2009, 383, 150-155.	2.4	36
236	Rainbow Perylene Monoimides: Easy Control of Optical Properties. Chemistry - A European Journal, 2009, 15, 878-884.	3.3	79
237	Linking Phospholipase Mobility to Activity by Singleâ€Molecule Wideâ€Field Microscopy. ChemPhysChem, 2009, 10, 151-161.	2.1	61
238	Molecular Rods with Oligospiroketal Backbones as Anchors in Biological Membranes. Angewandte Chemie - International Edition, 2009, 48, 4433-4435.	13.8	15
239	The Lipid Modifications of Ras that Sense Membrane Environments and Induce Local Enrichment. Angewandte Chemie - International Edition, 2009, 48, 8784-8787.	13.8	67
240	Energetics of the loopâ€toâ€helix transition leading to the coiledâ€coil structure of influenza virus hemagglutinin HA2 subunits. Proteins: Structure, Function and Bioinformatics, 2009, 74, 291-303.	2.6	17
241	Controlled Assembly of Vesicleâ€Based Nanocontainers on Layerâ€byâ€Layer Particles via DNA Hybridization. Small, 2009, 5, 320-323.	10.0	30
242	Generation of Multiblock Copolymers by PCR: Synthesis, Visualization and Nanomechanical Properties. Nano Letters, 2009, 9, 3658-3662.	9.1	30
243	Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy. Macromolecules, 2009, 42, 4681-4689.	4.8	47
244	Poly(BODIPY)s: A New Class of Tunable Polymeric Dyes. Macromolecules, 2009, 42, 6529-6536.	4.8	89
245	Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance. Journal of Materials Chemistry, 2009, 19, 5405.	6.7	57
246	Lipid Membranes Carrying Lipophilic Cholesterol-Based Oligonucleotidesâ€"Characterization and Application on Layer-by-Layer Coated Particles. Journal of Physical Chemistry B, 2009, 113, 16425-16434.	2.6	57
247	Size-Dependent Optical Properties of Dendronized Perylenediimide Nanoparticle Prepared by Laser Ablation in Water. Japanese Journal of Applied Physics, 2009, 48, 065002.	1.5	17
248	Characterization of lipid bilayers adsorbed on spherical LbL-support. Soft Matter, 2009, 5, 3331.	2.7	13
249	Cellular Uptake of DNA Block Copolymer Micelles with Different Shapes. Macromolecular Rapid Communications, 2008, 29, 326-329.	3.9	103
250	An Improved Perylene Sensitizer for Solar Cell Applications. ChemSusChem, 2008, 1, 615-618.	6.8	189
251	Synthesis of Nucleosides with 2′â€Fixed Lipid Anchors and Their Behavior in Phospholipid Membranes. European Journal of Organic Chemistry, 2008, 2008, 1917-1928.	2.4	21
252	Enzymatic Control of the Size of DNA Block Copolymer Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 974-976.	13.8	76

#	Article	IF	Citations
253	Radical Polymerization Tracked by Single Molecule Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 783-787.	13.8	75
254	Waterâ€Soluble Monofunctional Perylene and Terrylene Dyes: Powerful Labels for Singleâ€Enzyme Tracking. Angewandte Chemie - International Edition, 2008, 47, 3372-3375.	13.8	112
255	Amino-substituted rylene dicarboximides and their quinoidal charge delocalization after deprotonation. Chemical Communications, 2008, , 5028.	4.1	10
256	Energy and charge transfer in blends of dendronized perylenes with polyfluorene. Journal of Chemical Physics, 2008, 129, 114901.	3.0	16
257	α-Synuclein Selectively Binds to Anionic Phospholipids Embedded in Liquid-Disordered Domains. Journal of Molecular Biology, 2008, 375, 1394-1404.	4.2	165
258	How lipid flippases can modulate membrane structure. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1591-1600.	2.6	136
259	Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy. Photochemical and Photobiological Sciences, 2008, 7, 597-604.	2.9	40
260	In-Situ Visualization of the Enzymatic Growth of Surface-Immobilized DNA Block Copolymer Micelles by Scanning Force Microscopy. Macromolecules, 2008, 41, 2914-2919.	4.8	24
261	Exploiting the Nitrilotriacetic Acid Moiety for Biolabeling with Ultrastable Perylene Dyes. Journal of the American Chemical Society, 2008, 130, 5398-5399.	13.7	100
262	Lipophilic Oligonucleotides Spontaneously Insert into Lipid Membranes, Bind Complementary DNA Strands, and Sequester into Lipid-Disordered Domains. Langmuir, 2007, 23, 4455-4464.	3.5	54
263	Flippase Activity Detected with Unlabeled Lipids by Shape Changes of Giant Unilamellar Vesicles. Journal of Biological Chemistry, 2007, 282, 15559-15568.	3.4	59
264	The relevance of salt bridges for the stability of the influenza virus hemagglutinin. FASEB Journal, 2007, 21, 995-1002.	0.5	58
265	DNA meets synthetic polymers—highly versatile hybrid materials. Organic and Biomolecular Chemistry, 2007, 5, 1311-1320.	2.8	173
266	Intramolecular Charge-Transfer Tuning of Perylenes:  Spectroscopic Features and Performance in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15137-15140.	3.1	225
267	DNA multiblock copolymers. Chemical Communications, 2007, , 1358.	4.1	37
268	Energy Transfer in Molecular Layer-by-Layer Films of Water-Soluble Perylene Diimides. Langmuir, 2007, 23, 4623-4628.	3.5	27
269	Energy and Electron Transfer in Ethynylene Bridged Perylene Diimide Multichromophores. Journal of Physical Chemistry C, 2007, 111, 4861-4870.	3.1	83
270	Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging. Biophysical Journal, 2007, 93, 2877-2891.	0.5	49

#	Article	IF	CITATIONS
271	Engineering the Structural Properties of DNA Block Copolymer Micelles by Molecular Recognition. Angewandte Chemie - International Edition, 2007, 46, 1172-1175.	13.8	151
272	Nucleosides with 5′â€Fixed Lipid Groups – Synthesis and Anchoring in Lipid Membranes. European Journal of Organic Chemistry, 2007, 2007, 6060-6069.	2.4	14
273	Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration. European Biophysics Journal, 2007, 36, 327-335.	2.2	16
274	From Industrial Colorants to Single Photon Sources and Biolabels: The Fascination and Function of Rylene Dyes. Chemistry Letters, 2006, 35, 978-985.	1.3	161
275	Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer, 2006, 47, 2511-2518.	3.8	130
276	Twin Probes as a Novel Tool for the Detection of Single-Nucleotide Polymorphisms. Chemistry - A European Journal, 2006, 12, 3707-3713.	3.3	32
277	DNA-Templated Synthesis in Three Dimensions: Introducing a Micellar Scaffold for Organic Reactions. Angewandte Chemie - International Edition, 2006, 45, 4206-4210.	13.8	161
278	Lipid-Anchored Oligonucleotides for Stable Double-Helix Formation in Distinct Membrane Domains. Angewandte Chemie - International Edition, 2006, 45, 4440-4444.	13.8	77
279	Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation. ChemPhysChem, 2006, 7, 847-853.	2.1	10
280	Headgroup-specific Exposure of Phospholipids in ABCA1-expressing Cells. Journal of Biological Chemistry, 2005, 280, 26321-26329.	3.4	63
281	Delivery of Antisense Oligonucleotides Using Cholesterol-Modified Sense Dendrimers and Cationic Lipids. Bioconjugate Chemistry, 2005, 16, 827-836.	3.6	24
282	Polyphenylene Dendrimers as Scaffolds for Shape-Persistent Multiple Peptide Conjugates. Bioconjugate Chemistry, 2005, 16, 283-293.	3.6	51
283	Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 29-52.	2.4	130
284	Coherent Electronic Coupling versus Localization in Individual Molecular Dimers. Physical Review Letters, 2004, 92, 103001.	7.8	93
285	Tracking down lipid flippases and their biological functions. Journal of Cell Science, 2004, 117, 805-813.	2.0	180
286	Peptide-functionalized polyphenylene dendrimers. Tetrahedron, 2003, 59, 3925-3935.	1.9	46
287	Protein-mediated transbilayer movement of lipids in eukaryotes and prokaryotes: the relevance of ABC transporters. International Journal of Antimicrobial Agents, 2003, 22, 177-187.	2.5	26
288	Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers. Macromolecules, 2003, 36, 8489-8498.	4.8	67

#	Article	IF	CITATIONS
289	Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers. Macromolecules, 2003, 36, 5918-5925.	4.8	108
290	Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 3-13.	2.6	59
291	Generation dependent singlet–singlet annihilation within multichromophoric dendrimers studied by polychromatic transient absorption. Photochemical and Photobiological Sciences, 2003, 2, 1118-1124.	2.9	10
292	Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). Biochemical Journal, 2003, 376, 489-495.	3.7	94
293	The Potential of Fluorescent and Spin-labeled Steroid Analogs to Mimic Natural Cholesterol. Journal of Biological Chemistry, 2003, 278, 45563-45569.	3.4	171
294	Transport of phosphatidylserine via MDR1 (multidrug resistance 1)P-glycoprotein in a human gastric carcinoma cell line. Biochemical Journal, 2002, 365, 259-268.	3.7	79
295	Transbilayer Movement of Fluorescent Phospholipid Analogues in the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 2002, 41, 5605-5612.	2.5	52
296	Transbilayer Movement of Monohexosylsphingolipids in Endoplasmic Reticulum and Golgi Membranes. Biochemistry, 2002, 41, 13106-13115.	2.5	73
297	Rapid Transbilayer Movement of the Fluorescent Sterol Dehydroergosterol in Lipid Membranes. Biophysical Journal, 2002, 83, 1525-1534.	0.5	87
298	Transbilayer Movement of Phospholipids at the Main Phase Transition of Lipid Membranes: Implications for Rapid Flip-Flop in Biological Membranes. Biophysical Journal, 2002, 83, 3315-3323.	0.5	116
299	Protonation and Stability of the Globular Domain of Influenza Virus Hemagglutinin. Biophysical Journal, 2002, 82, 1050-1058.	0.5	60
300	Polyphenylene Dendrimers with Different Fluorescent Chromophores Asymmetrically Distributed at the Periphery. Journal of the American Chemical Society, 2001, 123, 8101-8108.	13.7	151
301	Intramolecular Energy Hopping and Energy Trapping in Polyphenylene Dendrimers with Multiple Peryleneimide Donor Chromophores and a Terryleneimide Acceptor Trap Chromophore. Journal of the American Chemical Society, 2001, 123, 7668-7676.	13.7	142
302	Probing Photophysical Processes in Individual Multichromophoric Dendrimers by Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2000, 122, 9278-9288.	13.7	230
303	Modification of the Cytoplasmic Domain of Influenza Virus Hemagglutinin Affects Enlargement of the Fusion Pore. Journal of Virology, 2000, 74, 7529-7537.	3.4	55
304	Rapid Flip-Flop of Phospholipids in Endoplasmic Reticulum Membranes Studied by a Stopped-Flow Approach. Biophysical Journal, 2000, 78, 2628-2640.	0.5	85
305	Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Letters, 1999, 463, 255-259.	2.8	90
306	Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. Journal of the American Chemical Society, 1999, 121, 3513-3520.	13.7	453

#	Article	IF	CITATIONS
307	Conformational Intermediates and Fusion Activity of Influenza Virus Hemagglutinin. Journal of Virology, 1999, 73, 4567-4574.	3.4	73
308	Compensating lipid fluxes generated by the aminophospholipid translocase. Molecular Membrane Biology, 1998, 15, 213-220.	2.0	4
309	Fusion Activity of Transmembrane and Cytoplasmic Domain Chimeras of the Influenza Virus Glycoprotein Hemagglutinin. Journal of Virology, 1998, 72, 133-141.	3.4	43
310	Transient Changes of the Conformation of Hemagglutinin of Influenza Virus at Low pH Detected by Time-resolved Circular Dichroism Spectroscopy. Journal of Biological Chemistry, 1997, 272, 9764-9770.	3.4	39
311	Modelling of Phospholipid Translocation in the Erythrocyte Membrane: A Combined Kinetic and Thermodynamic Approach. Journal of Theoretical Biology, 1997, 185, 295-312.	1.7	21
312	ATP-dependent redistribution of phosphatidylethanolamine in the plasma membrane of an epithelial and a hepatocytic cell line. Pflugers Archiv European Journal of Physiology, 1996, 431, R243-R244.	2.8	0
313	Analysis of delay times of hemagglutinin-mediated fusion between influenza virus and cell membranes. European Biophysics Journal, 1995, 24, 55-64.	2.2	11
314	A KINETIC MODEL OF PHOSPHOLIPID TRANSLOCATION IN THE ERYTHROCYTE MEMBRANE. Journal of Biological Systems, 1995, 03, 95-103.	1.4	0
315	Structure and Topology of the Influenza Virus Fusion Peptide in Lipid Bilayers. Journal of Biological Chemistry, 1995, 270, 27606-27614.	3.4	122
316	pH-dependent binding of the fluorophore bis-ANS to influenza virus reflects the conformational change of hemagglutinin. European Biophysics Journal, 1994, 23, 105-13.	2.2	35
317	On the validity of lipid dequenching assays for estimating virus fusion kinetics. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 360-366.	2.6	19
318	Rapid determination of the transbilayer distribution of NBD-phospholipids in erythrocyte membranes with dithionite. Molecular Membrane Biology, 1994, 11, 39-44.	2.0	59
319	Role of Target Membrane Structure in Fusion with Influenza Virus: Effect of Modulating Erythrocyte Transbilayer Phospholipid Distribution. Membrane Biochemistry, 1993, 10, 3-15.	0.6	16
320	Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry, 1990, 29, 2023-2027.	2.5	131
321	Conformational alterations within the glycocalyx of erythrocyte membranes studied by spin labelling. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 111-121.	2.6	10