Vasil'eva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5609723/publications.pdf Version: 2024-02-01

VACIL'EVA

#	Article	IF	CITATIONS
1	Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Applied Surface Science, 2005, 252, 1211-1220.	3.1	68
2	Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 2016, 307, 1219-1235.	2.2	41
3	Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 2010, 257, 1239-1246.	3.1	40
4	Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium. Applied Surface Science, 2011, 258, 719-726.	3.1	28
5	Electroanalytical properties of metal–oxide electrodes formed by plasma electrolytic oxidation. Journal of Electroanalytical Chemistry, 2013, 689, 262-268.	1.9	28
6	Titanium-supported nickel-copper oxide catalysts for oxidation of carbon(II) oxide. Russian Journal of General Chemistry, 2010, 80, 1557-1562.	0.3	22
7	Catalytic properties of aluminum/nickel-, copper-containing oxide film compositions. Kinetics and Catalysis, 2008, 49, 439-445.	0.3	18
8	Thermal behavior of Ni- and Cu-containing plasma electrolytic oxide coatings on titanium. Applied Surface Science, 2012, 258, 8667-8672.	3.1	18
9	W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation. Applied Surface Science, 2017, 422, 1007-1014.	3.1	18
10	Ni- and Cu-containing oxide layers on aluminum: Formation, composition, and catalytic properties. Doklady Physical Chemistry, 2007, 415, 183-185.	0.2	17
11	Phase Composition of Coatings Formed on Titanium in Borate Electrolyte by Microarch Oxidation. Russian Journal of Applied Chemistry, 2002, 75, 569-572.	0.1	14
12	FeOx,SiO2,TiO2/Ti composites prepared using plasma electrolytic oxidation as photo-Fenton-like catalysts for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 38-45.	2.0	13
13	Producing and studying oxide coatings containing manganese and nickel compounds on titanium from electrolyte suspensions. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 106-115.	0.3	12
14	Plasma electrolytic synthesis and characterization of oxide coatings with MWO4 (MÂ=ÂCo, Ni, Cu) as photo-Fenton heterogeneous catalysts. Surface and Coatings Technology, 2021, 424, 127640.	2.2	12
15	Cobalt-containing layers on titanium. Inorganic Materials, 2007, 43, 642-644.	0.2	10
16	Nickel- and copper-containing oxide films on titanium. Russian Journal of Inorganic Chemistry, 2009, 54, 1708-1712.	0.3	10
17	Formation, composition, structure, and catalytic activity in CO oxidation of SiO 2 + TiO 2 /Ti composite before and after modification by MnO x or CoO x. Surface and Coatings Technology, 2015, 275, 84-89.	2.2	10
18	Ti/TiO2-CoWO4-Co3(PO4)2 composites: Plasma electrolytic synthesis, optoelectronic properties, and solar light-driven photocatalytic activity. Journal of Alloys and Compounds, 2021, 863, 158066.	2.8	10

VASIL'EVA

#	Article	IF	CITATIONS
19	Plasma-electrochemical formation of oxide layers on titanium in aqueous electrolytes with trilonate complexes of manganese. Russian Journal of Applied Chemistry, 2010, 83, 434-439.	0.1	9
20	On the Surface Structure of Coatings Formed by Anodic Spark Method. Protection of Metals, 2004, 40, 352-357.	0.2	8
21	Characterization and photocatalytic activity of SiO2, FeOx coatings formed by plasma electrolytic oxidation of titanium. Surface and Coatings Technology, 2016, 307, 1310-1314.	2.2	8
22	Thermally Controlled Formation of WO3 Nano- and Microcrystals on the Surface of Coatings Produced on Titanium by Plasma Electrolytic Oxidation. Inorganic Materials, 2019, 55, 681-686.	0.2	8
23	Effect of the Composition of Oxide Layers Formed by Plasma Electrolytic Oxidation on the Mechanism of Peroxide Oxidative Desulfurization. Kinetics and Catalysis, 2020, 61, 283-290.	0.3	8
24	Catalytic Activity of Manganese-containing Layers Formed by Anodic-Spark Deposition. Russian Journal of Applied Chemistry, 2004, 77, 218-221.	0.1	7
25	Composition and Catalytic Activity of Plasma-Electrolytic Manganese Oxide Films on Titanium, Modified with Silver Compounds. Russian Journal of Applied Chemistry, 2005, 78, 1859-1863.	0.1	7
26	WO x , SiO2, TiO2/Ti composites, fabricated by means of plasma electrolytic oxidation, as catalysts of ethanol dehydration into ethylene. Russian Journal of Physical Chemistry A, 2015, 89, 968-973.	0.1	7
27	Ti/TiO2 indicator electrodes formed by plasma electrolytic oxidation for potentiometric analysis. International Journal of Environmental Analytical Chemistry, 2016, 96, 1128-1144.	1.8	7
28	Producing and investigating oxide coatings containing manganese and nickel compounds on titanium from electrolyte suspensions. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 593-598.	0.3	6
29	The porous structure of silicon-containing surface layers formed on titanium by plasma-electrolytic oxidation. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 499-507.	0.3	6
30	The effect of annealing on the composition and morphology of the surface of Ni-containing oxide layers on titanium formed by plasma-electrolytic method. Russian Journal of Applied Chemistry, 2012, 85, 575-579.	0.1	5
31	Composition, structure, and photocatalytic properties of Fe-containing oxide layers on titanium. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 879-888.	0.3	5
32	Oxidative destruction of phenol on Fe/SiO2 catalysts. Water Science and Technology, 2020, 81, 2189-2201.	1.2	5
33	Preparation and Photocatalytic Properties of β-Bi2O3/Bi2SiO5 Heterostructures. Russian Journal of Inorganic Chemistry, 2021, 66, 943-949.	0.3	5
34	Influence of plasma-electrolytic treatment of titanium on the composition and properties of ruthenium-titanium oxide anodes. Russian Journal of Applied Chemistry, 2004, 77, 1945-1950.	0.1	4
35	Surface structure of multicomponent oxide coatings on titanium. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 709-712.	0.3	4
36	Preparation and Study of Ti/TiO2,SbOx pH Electrodes. Journal of Analytical Chemistry, 2020, 75, 246-253.	0.4	4

VASIL'EVA

#	Article	IF	CITATIONS
37	Distribution of elements in the surface layer of plasma-electrolytic coatings formed on titanium in electrolytes with MnO2 particles. Russian Journal of Physical Chemistry A, 2011, 85, 1798-1803.	0.1	3
38	Deposition of cobalt-containing films on titanium by plasma electrolytic oxidation. Russian Journal of Applied Chemistry, 2012, 85, 953-956.	0.1	3
39	Fabrication of oxide coatings containing bismuth silicate or bismuth titanate on titanium. Vacuum, 2015, 122, 59-65.	1.6	3
40	Photocatalytic properties of Zn- and Cd-containing oxide layers on titanium formed by plasma electrolytic oxidation. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 711-715.	0.3	3
41	Plasma Electrolytic Formation of WO ₃ -CuO or WO ₃ -CuWO ₄ Oxide Layers on Titanium. Key Engineering Materials, 0, 806, 51-56.	0.4	3
42	Role and behavior of ultra-thin gold films on the fiber materials surface in the CO oxidation process. Journal of Alloys and Compounds, 2021, 852, 157042.	2.8	3
43	On the Effect of an Electrolyte and Impregnating Solution on Microcrystal Growth on the Surface of W-Containing PEO Coatings on Titanium at Oxidative Annealing. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 1201-1209.	0.3	3
44	Manganese-Containing Anodic Layers on Titanium. Russian Journal of Applied Chemistry, 2003, 76, 1059-1066.	0.1	2
45	MORPHOLOGICAL ELEMENTS OF THE RuO2·TIO2 COATING AS DISPLAYED AT DIFFERENT SCALE LEVELS AND POSSIBLE MODELS OF ITS CONDUCTIVITY. Surface Review and Letters, 2003, 10, 101-104.	0.5	2
46	Behavior of a ruthenium-titanium oxide film electrode (RTOE) in potentiometry. Journal of Analytical Chemistry, 2012, 67, 550-554.	0.4	2
47	An effect of heat processing on catalytic activity of a system MnO x ,SiO2/TiO2/Ti. Russian Journal of Applied Chemistry, 2013, 86, 112-115.	0.1	2
48	Composition, Surface Structure and Catalytic Properties of Manganese- and Cobalt-Containing Oxide Layers on Titanium. Advanced Materials Research, 0, 875-877, 351-355.	0.3	2
49	Silicate anodic coatings on aluminum containing oxides of cobalt and/or copper and/or cerium and their activity in CO oxidation. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 821-828.	0.3	2
50	The Effect of Acetonitrile Additives to Tetraborate Electrolyte on the Composition and Morphology of PEO Layers on Titanium. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 473-480.	0.3	2
51	Certain characteristics of nickel-containing and copper-containing oxide-phosphate layers on titanium. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 576-579.	0.3	1
52	Thermal Transformation of the Surface of Mn-, W-Containing Plasma Electrolytic Oxide Coatings on Titanium. Russian Journal of Applied Chemistry, 2019, 92, 1674-1679.	0.1	1
53	Plasma Electrolytic Synthesis and Characteristics of WO3–FeO–Fe2O3 and WO3–FeO–Fe2(WO4)3 Heterostructures. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 543-549.	0.3	1
54	Features of Coalescence of Gold on the Surface of Different Supports during Catalytic Oxidation of CO. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 1172-1179.	0.3	1

#	Article	IF	CITATIONS
55	Thermally Stimulated Evolution of the Surface of Ni- and Cu-Containing Plasma-Electrolytic Oxide Coatings on Titanium. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 719-728.	0.3	0
56	Advanced Methods for the Formation of Crust Catalysts for Oxidative Desulfurization. Kinetics and Catalysis, 2021, 62, 828-837.	0.3	0