Dionysios E Raitsos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5608836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The current situation and potential effects of climate change on the microbial load of marine bivalves of the Greek coastlines: an integrative review. Environmental Microbiology, 2022, 24, 1012-1034.	1.8	20
2	MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE, 2022, 17, e0262247.	1.1	32
3	Unravelling links between squid catch variations and biophysical mechanisms in South African waters. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 196, 105028.	0.6	7
4	A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
5	Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on Remote Sensing and In Situ Observations. Remote Sensing, 2022, 14, 12.	1.8	6
6	Physical forcing of phytoplankton dynamics in the <scp>Alâ€Wajh</scp> lagoon (Red Sea). Limnology and Oceanography Letters, 2022, 7, 373-384.	1.6	3
7	Investigating growth and reproduction of the Mediterranean swordfish Xiphias gladius through a full life cycle bioenergetics model. Marine Ecology - Progress Series, 2021, 680, 51-77.	0.9	4
8	Links between Phenology of Large Phytoplankton and Fisheries in the Northern and Central Red Sea. Remote Sensing, 2021, 13, 231.	1.8	11
9	Phytoplankton Biomass and the Hydrodynamic Regime in NEOM, Red Sea. Remote Sensing, 2021, 13, 2082.	1.8	6
10	Variability of mackerel fish catch and remotely-sensed biophysical controls in the eastern Pemba Channel. Ocean and Coastal Management, 2021, 207, 105593.	2.0	6
11	Sensing the ocean biological carbon pump from space: A review of capabilities, concepts, research gaps and future developments. Earth-Science Reviews, 2021, 217, 103604.	4.0	38
12	An Integrated Traits Resilience Assessment of Mediterranean fisheries landings. Journal of Animal Ecology, 2021, 90, 2122-2134.	1.3	10
13	Productivity driven by Tana river discharge is spatially limited in Kenyan coastal waters. Ocean and Coastal Management, 2021, 211, 105713.	2.0	3
14	Towards an End-to-End Analysis and Prediction System for Weather, Climate, and Marine Applications in the Red Sea. Bulletin of the American Meteorological Society, 2021, 102, E99-E122.	1.7	31
15	Seasonal metabolic and oxidative stress responses of commercially important invertebrate species—correlation with their habitat. Marine Ecology - Progress Series, 2021, 658, 27-46.	0.9	4
16	A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data. Remote Sensing, 2020, 12, 3127.	1.8	13
17	Developing an Atlas of Harmful Algal Blooms in the Red Sea: Linkages to Local Aquaculture. Remote Sensing, 2020, 12, 3695.	1.8	12
18	Seasonal cellular stress responses of commercially important invertebrates at different habitats of the North Aegean Sea. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 250, 110778.	0.8	3

#	Article	IF	CITATIONS
19	Interannual monsoon wind variability as a key driver of East African small pelagic fisheries. Scientific Reports, 2020, 10, 13247.	1.6	19
20	Rapid onsets of warming events trigger mass mortality of coral reef fish. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25378-25385.	3.3	57
21	The small pelagic fishery of the Pemba Channel, Tanzania: What we know and what we need to know for management under climate change. Ocean and Coastal Management, 2020, 197, 105322.	2.0	29
22	Remotely Sensing the Source and Transport of Marine Plastic Debris in Bay Islands of Honduras (Caribbean Sea). Remote Sensing, 2020, 12, 1727.	1.8	48
23	Shelfâ€Break Upwelling and Productivity Over the North Kenya Banks: The Importance of Large cale Ocean Dynamics. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015519.	1.0	29
24	Remotely sensing phytoplankton size structure in the Red Sea. Remote Sensing of Environment, 2019, 234, 111387.	4.6	19
25	Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll-a in Coastal Waters of the Red Sea. Frontiers in Microbiology, 2019, 10, 1964.	1.5	23
26	Evaluating tropical phytoplankton phenology metrics using contemporary tools. Scientific Reports, 2019, 9, 674.	1.6	26
27	Remotely sensing harmful algal blooms in the Red Sea. PLoS ONE, 2019, 14, e0215463.	1.1	16
28	Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Global Change Biology, 2019, 25, 2338-2351.	4.2	61
29	Ecological connectivity between the areas beyond national jurisdiction and coastal waters: Safeguarding interests of coastal communities in developing countries. Marine Policy, 2019, 104, 90-102.	1.5	96
30	Physical connectivity simulations reveal dynamic linkages between coral reefs in the southern Red Sea and the Indian Ocean. Scientific Reports, 2019, 9, 16598.	1.6	15
31	Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Scientific Reports, 2018, 8, 2240.	1.6	100
32	Interannual variability in lower trophic levels on the Alaskan Shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 147, 58-68.	0.6	39
33	A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts. Remote Sensing, 2018, 10, 1460.	1.8	18
34	Remotely Sensing the Biophysical Drivers of Sardinella aurita Variability in Ivorian Waters. Remote Sensing, 2018, 10, 785.	1.8	11
35	Resilience and regime shifts in a marine biodiversity hotspot. Scientific Reports, 2017, 7, 13647.	1.6	38
36	Sensing coral reef connectivity pathways from space. Scientific Reports, 2017, 7, 9338.	1.6	65

#	Article	IF	CITATIONS
37	Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sensing of Environment, 2017, 189, 56-66.	4.6	37
38	Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Frontiers in Marine Science, 2017, 4, .	1.2	133
39	Uncertainty in Ocean-Color Estimates of Chlorophyll for Phytoplankton Groups. Frontiers in Marine Science, 2017, 4, .	1.2	71
40	Impact of El Niño Variability on Oceanic Phytoplankton. Frontiers in Marine Science, 2017, 4, .	1.2	80
41	Expanding Aquatic Observations through Recreation. Frontiers in Marine Science, 2017, 4, .	1.2	26
42	Evaluation of Satellite Retrievals of Chlorophyll-a in the Arabian Gulf. Remote Sensing, 2017, 9, 301.	1.8	42
43	Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50Âyears. Global Change Biology, 2016, 22, 604-612.	4.2	20
44	The Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 2016, 9, s235-s320.	0.6	86
45	The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms. PLoS ONE, 2016, 11, e0168440.	1.1	50
46	Monsoon oscillations regulate fertility of the Red Sea. Geophysical Research Letters, 2015, 42, 855-862.	1.5	96
47	Factors governing the deep ventilation of the <scp>R</scp> ed <scp>S</scp> ea. Journal of Geophysical Research: Oceans, 2015, 120, 7493-7505.	1.0	36
48	Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea. Journal of Climate, 2015, 28, 2665-2681.	1.2	39
49	Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea. Remote Sensing of Environment, 2015, 160, 222-234.	4.6	90
50	Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas. Scientific Reports, 2015, 5, 11240.	1.6	26
51	Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean. Remote Sensing of Environment, 2015, 164, 254-269.	4.6	23
52	Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sensing of Environment, 2015, 165, 64-85.	4.6	67
53	The Continuous Plankton Recorder survey: How can long-term phytoplankton datasets contribute to the assessment of Good Environmental Status?. Estuarine, Coastal and Shelf Science, 2015, 162, 88-97.	0.9	42
54	Indications of a climate effect on Mediterranean fisheries. Climatic Change, 2014, 122, 41-54.	1.7	52

#	Article	IF	CITATIONS
55	Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. Journal of Geophysical Research: Oceans, 2014, 119, 1791-1811.	1.0	61
56	From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic. Global Change Biology, 2014, 20, 2117-2123.	4.2	29
57	Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence. Remote Sensing of Environment, 2013, 136, 218-224.	4.6	67
58	A 60-year ocean colour data set from the continuous plankton recorder. Journal of Plankton Research, 2013, 35, 158-164.	0.8	14
59	Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea. Journal of Climate, 2013, 26, 1685-1701.	1.2	40
60	Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea. PLoS ONE, 2013, 8, e64909.	1.1	240
61	Biological invasions and climatic warming: implications for south-eastern Aegean ecosystem functioning. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 777-789.	0.4	35
62	Assessing chlorophyll variability in relation to the environmental regime in Pagasitikos Gulf, Greece. Journal of Marine Systems, 2012, 94, S16-S22.	0.9	13
63	A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits. Journal of Marine Systems, 2012, 94, S102-S117.	0.9	22
64	Inter-annual productivity variability in the North Aegean Sea: Influence of thermohaline circulation during the Eastern Mediterranean Transient. Journal of Marine Systems, 2012, 96-97, 72-81.	0.9	27
65	Abrupt warming of the Red Sea. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	111
66	The Summer North Atlantic Oscillation Influence on the Eastern Mediterranean. Journal of Climate, 2011, 24, 5584-5596.	1.2	45
67	An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sensing of Environment, 2011, 115, 325-339.	4.6	138
68	Macroscale factors affecting diatom abundance: a synergistic use of Continuous Plankton Recorder and satellite remote sensing data. International Journal of Remote Sensing, 2011, 32, 2081-2094.	1.3	9
69	Global climate change amplifies the entry of tropical species into the eastern Mediterranean Sea. Limnology and Oceanography, 2010, 55, 1478-1484.	1.6	197
70	Decadal variability in biogeochemical models: Comparison with a 50â€year ocean colour dataset. Geophysical Research Letters, 2009, 36, .	1.5	20
71	Riverâ€induced particle distribution in the northwestern Black Sea (September 2002 and 2004). Journal of Geophysical Research, 2009, 114, .	3.3	13
72	Non-linearities, regime shifts and recovery: The recent influence of climate on Black Sea chlorophyll. Journal of Marine Systems, 2008, 74, 649-658.	0.9	60

#	Article	IF	CITATIONS
73	Identifying four phytoplankton functional types from space: An ecological approach. Limnology and Oceanography, 2008, 53, 605-613.	1.6	103
74	Variations in the Phytoplankton of the North-Eastern Atlantic Ocean: From the Irish Sea to the Bay of Biscay. , 2008, , 67-78.		6
75	A longâ€ŧerm chlorophyll dataset reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient levels. Limnology and Oceanography, 2007, 52, 635-648.	1.6	170
76	Spatial patterns of diatom and dinoflagellate seasonal cycles in the NE Atlantic Ocean. Marine Ecology - Progress Series, 2007, 339, 301-306.	0.9	29
77	Coccolithophore bloom size variation in response to the regional environment of the subarctic North Atlantic. Limnology and Oceanography, 2006, 51, 2122-2130.	1.6	83
78	Extending the SeaWiFS chlorophyll data set back 50 years in the northeast Atlantic. Geophysical Research Letters, 2005, 32, .	1.5	73
79	Ocean Lagrangian Trajectories (OLTraj): Lagrangian analysis for non-expert users. Open Research Europe, 0, 1, 117.	2.0	0
80	Ocean Lagrangian Trajectories (OLTraj): Lagrangian analysis for non-expert users. Open Research Europe, 0, 1, 117.	2.0	0