Ryan E Tomlinson

List of Publications by Citations

Source: https://exaly.com/author-pdf/5608539/ryan-e-tomlinson-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41 913 17 30 g-index

48 1,231 6.3 4.4 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
41	Skeletal Blood Flow in Bone Repair and Maintenance. <i>Bone Research</i> , 2013 , 1, 311-22	13.3	125
40	NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E3632-	·E ¹ 316541	79
39	Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E11238-E11247	11.5	75
38	NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. <i>Cell Reports</i> , 2016 , 16, 2723-2735	10.6	74
37	Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	63
36	Fracture repair requires TrkA signaling by skeletal sensory nerves. <i>Journal of Clinical Investigation</i> , 2019 , 129, 5137-5150	15.9	50
35	Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. <i>Molecular and Cellular Biology</i> , 2014 , 34, 1850-62	4.8	45
34	Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. <i>Journal of Cell Science</i> , 2017 , 130, 531-540	5.3	42
33	The hypoxia-inducible factor-1 activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. <i>Bone Research</i> , 2016 , 4, 16011	13.3	40
32	Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. <i>Journal of Biological Chemistry</i> , 2017 , 292, 13809-13822	5.4	37
31	Angiogenesis is required for stress fracture healing in rats. <i>Bone</i> , 2013 , 52, 212-9	4.7	32
30	Connexin43 and Runx2 Interact to Affect Cortical Bone Geometry, Skeletal Development, and Osteoblast and Osteoclast Function. <i>Journal of Bone and Mineral Research</i> , 2017 , 32, 1727-1738	6.3	31
29	The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. <i>PLoS Genetics</i> , 2020 , 16, e1008884	6	25
28	Three-dimensional surface texture visualization of bone tissue through epifluorescence-based serial block face imaging. <i>Journal of Microscopy</i> , 2009 , 236, 52-9	1.9	25
27	The Role of Bone Marrow Aspirate Concentrate for the Treatment of Focal Chondral Lesions of the Knee: A Systematic Review and Critical Analysis of Animal and Clinical Studies. <i>Arthroscopy - Journal of Arthroscopic and Related Surgery</i> , 2019 , 35, 1860-1877	5.4	24
26	HIF-1[regulates bone formation after osteogenic mechanical loading. <i>Bone</i> , 2015 , 73, 98-104	4.7	21
25	Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone. <i>Bone</i> , 2009 , 45, 487-92	4.7	18

(2022-2013)

24	Anti-resorptive agents reduce the size of resorption cavities: a three-dimensional dynamic bone histomorphometry study. <i>Bone</i> , 2013 , 57, 277-83	4.7	14
23	Naproxen impairs load-induced bone formation, reduces bone toughness, and diminishes woven bone formation following stress fracture in mice. <i>Bone</i> , 2019 , 124, 22-32	4.7	13
22	Quantification of skeletal blood flow and fluoride metabolism in rats using PET in a pre-clinical stress fracture model. <i>Molecular Imaging and Biology</i> , 2012 , 14, 348-54	3.8	13
21	The Role of Nerves in Skeletal Development, Adaptation, and Aging. <i>Frontiers in Endocrinology</i> , 2020 , 11, 646	5.7	11
20	Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing. <i>Journal of Applied Physiology</i> , 2014 , 116, 416-24	3.7	10
19	Antagonizing the \square B integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading. <i>Journal of Bone and Mineral Research</i> , 2014 , 29, 1970-80	6.3	10
18	The impact of cholesterol deposits on the fibrillar architecture of the Achilles tendon in a rabbit model of hypercholesterolemia. <i>Journal of Orthopaedic Surgery and Research</i> , 2019 , 14, 172	2.8	7
17	Dysregulated TGF-Bignaling alters bone microstructure in a mouse model of Loeys-Dietz syndrome. <i>Journal of Orthopaedic Research</i> , 2015 , 33, 1447-54	3.8	7
16	Preclinical Single Photon Emission Computed Tomography of Alpha Particle-Emitting Radium-223. Cancer Biotherapy and Radiopharmaceuticals, 2020 , 35, 520-529	3.9	6
15	Frizzled-4 is required for normal bone acquisition despite compensation by Frizzled-8. <i>Journal of Cellular Physiology</i> , 2020 , 235, 6673-6683	7	5
14	Local injections of ENGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. <i>Scientific Reports</i> , 2020 , 10, 22241	4.9	4
13	The TrkA agonist gambogic amide augments skeletal adaptation to mechanical loading. <i>Bone</i> , 2021 , 147, 115908	4.7	2
12	Leveraging Advancements in Tissue Engineering for Bioprinting Dental Tissues. <i>Bioprinting</i> , 2021 , 23,	7	2
11	Circulating inflammatory cytokines alter transcriptional activity within fibrotic tissue of Dupuytren disease patients. <i>Journal of Orthopaedic Research</i> , 2021 ,	3.8	1
10	Function of peripheral nerves in the development and healing of tendon and bone. <i>Seminars in Cell and Developmental Biology</i> , 2021 , 123, 48-48	7.5	1
9	Mechanisms of reducing joint stiffness by blocking collagen fibrillogenesis in a rabbit model of posttraumatic arthrofibrosis. <i>PLoS ONE</i> , 2021 , 16, e0257147	3.7	1
8	Null Mice-a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging <i>Frontiers in Cell and Developmental Biology</i> , 2022 , 10, 82324	459 ⁷	O
7	Enhancing precision in bioprinting utilizing fuzzy systems. <i>Bioprinting</i> , 2022 , 25, e00190	7	O

- 6 Vascular and nerve interactions **2020**, 205-218
- Emerging evidence that adaptive bone formation inhibition by non-steroidal anti-inflammatory drugs increases stress fracture risk. *Experimental Biology and Medicine*, **2021**, 246, 1104-1111

3.7

- The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP **2020**, 16, e1008884
- The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP **2020**, 16, e1008884
- The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP **2020**, 16, e1008884
- The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP **2020**, 16, e1008884