Jian-jun Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5608252/publications.pdf Version: 2024-02-01

IIAN-IIIN DEL

#	Article	IF	CITATIONS
1	Thermoanaerobacterium thermosaccharolyticum \hat{I}^2 -glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels, 2012, 5, 31.	6.2	131
2	Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. Journal of Molecular Catalysis B: Enzymatic, 2013, 95, 62-69.	1.8	62
3	One-Pot Synthesis of Hyperoside by a Three-Enzyme Cascade Using a UDP-Galactose Regeneration System. Journal of Agricultural and Food Chemistry, 2017, 65, 6042-6048.	2.4	58
4	The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metabolic Engineering, 2011, 13, 186-193.	3.6	45
5	Metabolic Engineering of <i>Escherichia coli</i> for Astragalin Biosynthesis. Journal of Agricultural and Food Chemistry, 2016, 64, 7966-7972.	2.4	44
6	Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metabolic Engineering, 2010, 12, 420-428.	3.6	35
7	Enhancing the thermostability of $\hat{l}\pm$ -L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnology, 2017, 17, 21.	1.7	35
8	Characterization of a α-l-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorganic Chemistry, 2018, 81, 461-467.	2.0	34
9	Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnology, 2018, 18, 29.	1.7	33
10	Efficient Biotransformation of Luteolin to Isoorientin through Adjusting Induction Strategy, Controlling Acetic Acid, and Increasing UDP-Glucose Supply in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 331-340.	2.4	30
11	Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose. BMC Biotechnology, 2013, 13, 101.	1.7	29
12	Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069T. Journal of Molecular Catalysis B: Enzymatic, 2015, 113, 104-109.	1.8	29
13	Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a I²-glucosidase. Bioorganic Chemistry, 2019, 85, 159-167.	2.0	26
14	Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 171-186.	1.4	25
15	Purification and characterization of an extracellular α-l-arabinosidase from a novel isolate Bacillus pumilus ARA and its over-expression in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 78, 115-121.	1.7	24
16	Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes. Journal of Microbiology and Biotechnology, 2014, 24, 545-555.	0.9	24
17	Production of isoorientin and isovitexin from luteolin and apigenin using coupled catalysis of glycosyltransferase and sucrose synthase. Applied Biochemistry and Biotechnology, 2020, 190, 601-615.	1.4	22
18	Biochemical characterization of a novel hyperthermophilic α-l-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable l²-glucosidase. Process Biochemistry, 2020, 93, 115-124.	1.8	22

Jian-jun Pei

#	Article	IF	CITATIONS
19	Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes. Journal of Structural Biology, 2014, 188, 195-204.	1.3	20
20	Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochemical Engineering Journal, 2018, 139, 33-42.	1.8	20
21	High-level expression of a novel multifunctional GH3 family β-xylosidase/α-arabinosidase/β-glucosidase from Dictyoglomus turgidum in Escherichia coli. Bioorganic Chemistry, 2021, 111, 104906.	2.0	18
22	Highly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated ¥ é-Glucosidase and é é-Xylosidase from Dictyoglomus thermophilum. Journal of Microbiology and Biotechnology, 2019, 29, 1882-1893.	0.9	16
23	Enhancing UDP-Rhamnose Supply for Rhamnosylation of Flavonoids in <i>Escherichia coli</i> by Regulating the Modular Pathway and Improving NADPH Availability. Journal of Agricultural and Food Chemistry, 2020, 68, 9513-9523.	2.4	13
24	Cloning and characterization of the β-xylosidase from Dictyoglomus turgidum for high efficient biotransformation of 10-deacetyl-7-xylosItaxol. Bioorganic Chemistry, 2020, 94, 103357.	2.0	12
25	Cloning, Overexpression, and Characterization of a Thermostable, Organic Solvent-Tolerant Laccase from <i>Bacillus pumilus</i> ARA and Its Application to Dye Decolorization. ACS Omega, 2021, 6, 9741-9749.	1.6	12
26	Orientin and vitexin production by a one-pot enzymatic cascade of a glycosyltransferase and sucrose synthase. Bioorganic Chemistry, 2021, 112, 104926.	2.0	12
27	Immobilization of Thermostable β-Glucosidase and α-l-Rhamnosidase from Dictyoglomus thermophilum DSM3960 and Their Cooperated Biotransformation of Total Flavonoids Extract from Epimedium into Icaritin. Catalysis Letters, 2021, 151, 2950-2963.	1.4	12
28	Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity. BMC Biotechnology, 2018, 18, 26.	1.7	11
29	Biotransformation of Ginsenosides Re and Rg1 into Rg2 and Rh1 by Thermostable β-Glucosidase from Thermotoga thermarum. Chemistry of Natural Compounds, 2017, 53, 472-477.	0.2	9
30	Synthesis of Isorhamnetin-3-O-Rhamnoside by a Three-Enzyme (Rhamnosyltransferase, Glycine Max) Tj ETQqO C Molecules, 2019, 24, 3042.	0 rgBT /O 1.7	verlock 10 Tf . 9
31	Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. Journal of Biotechnology, 2019, 292, 68-75.	1.9	9
32	Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 637397.	2.0	9
33	Biochemical Characterization of a Novel Prenyltransferase from <i>Streptomyces</i> sp. NT11 and Development of a Recombinant Strain for the Production of 6-Prenylnaringenin. Journal of Agricultural and Food Chemistry, 2021, 69, 14231-14240.	2.4	9
34	One-step purification and immobilization of thermostable β-glucosidase on Na-Y zeolite based on the linker and its application in the efficient production of baohuoside I from icariin. Bioorganic Chemistry, 2022, 121, 105690.	2.0	6
35	Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme and Microbial Technology, 2021, 150, 109862.	1.6	5
36	Synergistic Catalysis of Glycosyltransferase and Sucrose Synthase to Produce Isoquercitrin Through Glycosylation of Quercetin. Chemistry of Natural Compounds, 2019, 55, 453-457.	0.2	4

Jian-jun Pei

#	Article	IF	CITATIONS
37	Overexpression and characterization of a novel plant carotenoid cleavage dioxygenase 1 from Morus notabilis. Chemistry and Biodiversity, 2021, , .	1.0	4
38	RNA-Seq analysis and comparison of the enzymes involved in ionone synthesis of three cultivars of Osmanthus. Journal of Asian Natural Products Research, 2018, 20, 649-661.	0.7	3
39	Efficient Production Hyperoside from Quercetin in Escherichia coli Through Increasing UDP-Galactose Supply and Recycling of Resting Cell. Catalysis Letters, 2021, 151, 1202-1211.	1.4	3
40	Cloning and Characterization of a Novel Carotenoid Cleavage Dioxygenase 1 from <i>Helianthus annuus</i> . Chemistry and Biodiversity, 2022, 19, e2100694.	1.0	3
41	Modification to increase the thermostability and catalytic efficiency of α-L-rhamnosidase from Bacteroides thetaiotaomicron and high-level expression. Enzyme and Microbial Technology, 2022, 158, 110040.	1.6	3
42	Data on thermostable β-glucosidase immobilized by Zn2+. Data in Brief, 2018, 18, 873-876.	0.5	2
43	Combinatorial Engineering of Upper Pathways and Carotenoid Cleavage Dioxygenase in Escherichia coli for Pseudoionone Production. Applied Biochemistry and Biotechnology, 2022, 194, 5977-5991.	1.4	2