Craig A Stow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 2004, 173, 219-239.	1.2	392
2	Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 2009, 76, 4-15.	0.9	365
3	The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae, 2016, 54, 87-97.	2.2	318
4	Macrosystems ecology: understanding ecological patterns and processes at continental scales. Frontiers in Ecology and the Environment, 2014, 12, 5-14.	1.9	285
5	Long-Term and Seasonal Trend Decomposition of Maumee River Nutrient Inputs to Western Lake Erie. Environmental Science & Technology, 2015, 49, 3392-3400.	4.6	176
6	Crossâ€scale interactions: quantifying multiâ€scaled cause–effect relationships in macrosystems. Frontiers in Ecology and the Environment, 2014, 12, 65-73.	1.9	164
7	Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters, 2006, 9, 630-643.	3.0	149
8	On Monte Carlo methods for Bayesian inference. Ecological Modelling, 2003, 159, 269-277.	1.2	144
9	Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling, 2006, 192, 385-409.	1.2	143
10	A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecological Modelling, 2001, 143, 165-181.	1.2	138
11	Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Research, 2001, 35, 1489-1499.	5.3	136
12	Using a <scp>B</scp> ayesian hierarchical model to improve <scp>L</scp> ake <scp>E</scp> rie cyanobacteria bloom forecasts. Water Resources Research, 2014, 50, 7847-7860.	1.7	136
13	Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1169-1178.	0.7	133
14	Coasts, water levels, and climate change: A Great Lakes perspective. Climatic Change, 2013, 120, 697-711.	1.7	131
15	Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake. Ecological Modelling, 2007, 208, 215-229.	1.2	126
16	Predicting the Frequency of Water Quality Standard Violations:  A Probabilistic Approach for TMDL Development. Environmental Science & Technology, 2002, 36, 2109-2115.	4.6	116
17	Discontinuities, crossâ€scale patterns, and the organization of ecosystems. Ecology, 2014, 95, 654-667.	1.5	109
18	Modelling Oxygen Dynamics in an Intermittently Stratified Estuary: Estimation of Process Rates Using Field Data. Estuarine, Coastal and Shelf Science, 2001, 52, 33-49.	0.9	107

#	Article	IF	CITATIONS
19	Using Landscape Limnology to Classify Freshwater Ecosystems for Multi-ecosystem Management and Conservation. BioScience, 2010, 60, 440-454.	2.2	106
20	Comparison of Estuarine Water Quality Models for Total Maximum Daily Load Development in Neuse River Estuary. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 307-314.	1.3	103
21	LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience, 2017, 6, 1-22.	3.3	102
22	PATTERNS OF WATERSHED URBANIZATION AND IMPACTS ON WATER QUALITY. Journal of the American Water Resources Association, 2005, 41, 693-708.	1.0	98
23	Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. Journal of Great Lakes Research, 2012, 38, 336-352.	0.8	95
24	Recent Water Level Declines in the Lake Michiganâ^'Huron System. Environmental Science & Technology, 2008, 42, 367-373.	4.6	92
25	Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. GigaScience, 2015, 4, 28.	3.3	92
26	Water Loss from the Great Lakes. Science, 2014, 343, 1084-1085.	6.0	91
27	Estimating Ecological Thresholds for Phosphorus in the Everglades. Environmental Science & Technology, 2007, 41, 8084-8091.	4.6	87
28	Integrated Approach to Total Maximum Daily Load Development for Neuse River Estuary using Bayesian Probability Network Model (Neu-BERN). Journal of Water Resources Planning and Management - ASCE, 2003, 129, 271-282.	1.3	82
29	Regional variability among nonlinear chlorophyll—phosphorus relationships in lakes. Limnology and Oceanography, 2014, 59, 1691-1703.	1.6	78
30	Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie. Journal of Great Lakes Research, 2016, 42, 1184-1192.	0.8	77
31	Ecological and economic analysis of lake eutrophication by nonpoint pollution. Austral Ecology, 1998, 23, 68-79.	0.7	76
32	Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity. PLoS ONE, 2014, 9, e95769.	1.1	74
33	Comparative analysis of discretization methods in Bayesian networks. Environmental Modelling and Software, 2017, 87, 64-71.	1.9	72
34	Seasonal and Long-Term Nutrient Trend Decomposition along a Spatial Gradient in the Neuse River Watershed. Environmental Science & Technology, 2000, 34, 4474-4482.	4.6	70
35	Evaluation of the Current State of Mechanistic Aquatic Biogeochemical Modeling:Â Citation Analysis and Future Perspectives. Environmental Science & Technology, 2006, 40, 6547-6554.	4.6	70
36	Climate warming and changes in <i>Cyclotella sensu lato</i> in the Laurentian Great Lakes. Limnology and Oceanography, 2017, 62, 768-783.	1.6	70

#	Article	IF	CITATIONS
37	A Predictive Approach to Nutrient Criteria. Environmental Science & Technology, 2005, 39, 2913-2919.	4.6	65
38	Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990. Global Change Biology, 2017, 23, 5455-5467.	4.2	65
39	Confounding Effect of Flow on Estuarine Response to Nitrogen Loading. Journal of Environmental Engineering, ASCE, 2004, 130, 605-614.	0.7	63
40	Fitting Predator-Prey Models to Time Series with Observation Errors. Ecology, 1994, 75, 1254-1264.	1.5	61
41	N2O Emissions from Streams in the Neuse River Watershed, North Carolina. Environmental Science & Technology, 2005, 39, 6999-7004.	4.6	61
42	Management applications of discontinuity theory. Journal of Applied Ecology, 2016, 53, 688-698.	1.9	59
43	Bayesian parameter estimation in a mixed-order model of BOD decay. Water Research, 2000, 34, 1830-1836.	5.3	54
44	Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum. Ecological Modelling, 2007, 208, 230-246.	1.2	54
45	Biological invasions, ecological resilience and adaptive governance. Journal of Environmental Management, 2016, 183, 399-407.	3.8	54
46	Evidence That PCBs Are Approaching Stable Concentrations In Lake Michigan Fishes. , 1995, 5, 248-260.		53
47	Assessing the Effects of Nutrient Management in an Estuary Experiencing Climatic Change: The Neuse River Estuary, North Carolina. Environmental Management, 2006, 37, 422-436.	1.2	52
48	Firm size diversity, functional richness, and resilience. Environment and Development Economics, 2006, 11, 533-551.	1.3	51
49	Detecting spatial regimes in ecosystems. Ecology Letters, 2017, 20, 19-32.	3.0	51
50	Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model. Water Resources Research, 2014, 50, 2518-2532.	1.7	50
51	Seasonal overturn and stratification changes drive deep-water warming in one of Earth's largest lakes. Nature Communications, 2021, 12, 1688.	5.8	50
52	An examination of the PCB: lipid relationship among individual fish. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1031-1038.	0.7	47
53	Application of Bayesian structural equation modeling for examining phytoplankton dynamics in the Neuse River Estuary (North Carolina, USA). Estuarine, Coastal and Shelf Science, 2007, 72, 63-80.	0.9	46
54	Factors Associated with PCB Concentrations in Lake Michigan Fish. Environmental Science & amp; Technology, 1995, 29, 522-527.	4.6	44

#	Article	IF	CITATIONS
55	Whole-fish versus filet polychlorinated-biphenyl concentrations: An analysis using classification and regression tree models. Environmental Toxicology and Chemistry, 1999, 18, 1817-1823.	2.2	43
56	Coastal Upwelling Influences Hypoxia Spatial Patterns and Nearshore Dynamics in Lake Erie. Journal of Geophysical Research: Oceans, 2019, 124, 6154-6175.	1.0	43
57	FORECASTING PCB CONCENTRATIONS IN LAKE MICHIGAN SALMONIDS: A DYNAMIC LINEAR MODEL APPROACH. , 1998, 8, 659-668.		42
58	Body size distributions signal a regime shift in a lake ecosystem. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160249.	1.2	42
59	A BAYESIAN APPROACH TO RETRANSFORMATION BIAS IN TRANSFORMED REGRESSION. Ecology, 2006, 87, 1472-1477.	1.5	41
60	An appraisal of the Great Lakes advanced hydrologic prediction system. Journal of Great Lakes Research, 2011, , .	0.8	41
61	Approaches to Evaluate Water Quality Model Parameter Uncertainty for Adaptive TMDL Implementation ¹ . Journal of the American Water Resources Association, 2007, 43, 1499-1507.	1.0	40
62	Do Invasive Mussels Restrict Offshore Phosphorus Transport in Lake Huron?. Environmental Science & Technology, 2011, 45, 7226-7231.	4.6	40
63	An e×amination of the PCB: lipid relationship among individual fish. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1031-1038.	0.7	40
64	PCB Accumulation in Lake Michigan Coho and Chinook Salmon: Individual-Based Models Using Allometric Relationships. Environmental Science & Technology, 1994, 28, 1543-1549.	4.6	38
65	Assessing TMDL Effectiveness Using Flow-Adjusted Concentrations:Â A Case Study of the Neuse River, North Carolina. Environmental Science & Technology, 2003, 37, 2043-2050.	4.6	38
66	Evaluating Discontinuities in Complex Systems: Toward Quantitative Measures of Resilience. Ecology and Society, 2007, 12, .	1.0	38
67	Are Chlorophyll <i>a</i> –Total Phosphorus Correlations Useful for Inference and Prediction?. Environmental Science & Technology, 2013, 47, 3768-3773.	4.6	38
68	LONG-TERM ENVIRONMENTAL MONITORING: SOME PERSPECTIVES FROM LAKES. , 1998, 8, 269-276.		35
69	PCB Congeners in Lake Michigan Coho (Oncorhynchus kisutch) and Chinook (Oncorhynchus) Tj ETQq1 1 0.784	4314 rgBT 4.6	/Ovgflock 10
70	Managing for resilience: an information theoryâ€based approach to assessing ecosystems. Journal of Applied Ecology, 2016, 53, 656-665.	1.9	35
71	Fisheries Management to Reduce Contaminant Consumption. BioScience, 1995, 45, 752-758.	2.2	34
72	Declining Threshold for Hypoxia in the Gulf of Mexico. Environmental Science & Technology, 2005, 39, 716-723.	4.6	34

#	Article	IF	CITATIONS
73	Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshwater Biology, 2013, 58, 192-206.	1.2	34
74	Mining web-based data to assess public response to environmental events. Environmental Pollution, 2015, 198, 97-99.	3.7	33
75	Nutrient criteria for lakes, ponds, and reservoirs: A Bayesian TREED model approach. Ecological Modelling, 2009, 220, 630-639.	1.2	32
76	Panarchy: opportunities and challenges for ecosystem management. Frontiers in Ecology and the Environment, 2020, 18, 576-583.	1.9	32
77	Great Lakes Herring Gull Egg PCB Concentrations Indicate Approximate Steady-State Conditions. Environmental Science & Technology, 1995, 29, 2893-2897.	4.6	31
78	Phosphorus targets and eutrophication objectives in Saginaw Bay: A 35year assessment. Journal of Great Lakes Research, 2014, 40, 4-10.	0.8	31
79	Impacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporation. Geophysical Research Letters, 2015, 42, 3364-3370.	1.5	31
80	Will Lake Michigan Lake Trout Meet the Great Lakes Strategy 2002 PCB Reduction Goal?. Environmental Science & Technology, 2004, 38, 359-363.	4.6	30
81	Recent Patterns in Lake Erie Phosphorus and Chlorophyll <i>a</i> Concentrations in Response to Changing Loads. Environmental Science & Technology, 2020, 54, 835-841.	4.6	28
82	PCB Concentration Trends in Lake Michigan Coho (<i>Oncorhynchus kisutch</i>) and Chinook Salmon (<i>O</i> . <i>tshawytscha</i>). Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 1384-1390.	0.7	27
83	Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model. Journal of Marine Systems, 2009, 76, 244-250.	0.9	27
84	A Bayesian observation error model to predict cyanobacterial biovolume from spring total phosphorus in Lake Mendota, Wisconsin. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 464-473.	0.7	26
85	Bayesian methods for regional-scale eutrophication models. Water Research, 2004, 38, 2764-2774.	5.3	26
86	Nitrous Oxide Emissions from the Gulf of Mexico Hypoxic Zone. Environmental Science & Technology, 2010, 44, 1617-1623.	4.6	26
87	Unprecedented Seasonal Water Level Dynamics on One of the Earth's Largest Lakes. Bulletin of the American Meteorological Society, 2014, 95, 15-17.	1.7	25
88	Phosphorus load estimation in the Saginaw River, MI using a Bayesian hierarchical/multilevel model. Water Research, 2010, 44, 3270-3282.	5.3	23
89	Implications of Stein's Paradox for Environmental Standard Compliance Assessment. Environmental Science & Technology, 2015, 49, 5913-5920.	4.6	23
90	A <scp>B</scp> ayesian hierarchical approach to model seasonal algal variability along an upstream to downstream river gradient. Water Resources Research, 2016, 52, 348-357.	1.7	21

#	Article	IF	CITATIONS
91	Predicting the effects of freshwater diversions on juvenile brown shrimp growth and production: a Bayesian-based approach. Marine Ecology - Progress Series, 2012, 444, 155-173.	0.9	21
92	Effects of hypoxia on habitat quality of pelagic planktivorous fishes in the northern Gulf of Mexico. Marine Ecology - Progress Series, 2014, 505, 209-226.	0.9	20
93	Lake Erie phosphorus targets: An imperative for active adaptive management. Journal of Great Lakes Research, 2020, 46, 672-676.	0.8	19
94	A Tugâ€ofâ€War Within the Hydrologic Cycle of a Continental Freshwater Basin. Geophysical Research Letters, 2021, 48, e2020GL090374.	1.5	19
95	Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers. Ecosphere, 2017, 8, e02024.	1.0	18
96	Evidence for regional nitrogen stress on chlorophyll a in lakes across large landscape and climate gradients. Limnology and Oceanography, 2018, 63, S324.	1.6	18
97	The distribution and role of functional abundance in crossâ€scale resilience. Ecology, 2018, 99, 2421-2432.	1.5	18
98	Trophic Shift, Not Collapse. Environmental Science & Technology, 2013, 47, 11915-11916.	4.6	17
99	An expandable web-based platform for visually analyzing basin-scale hydro-climate time series data. Environmental Modelling and Software, 2016, 78, 97-105.	1.9	17
100	Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie. Ecological Indicators, 2021, 130, 108055.	2.6	17
101	Monitoring Design and Data Analysis for Trend Detection. Lake and Reservoir Management, 1990, 6, 49-60.	0.4	16
102	Sources of variability in microcontaminant data for Lake Michigan salmonids: statistical models and implications for trend detection. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 71-85.	0.7	16
103	Small values in big data: The continuing need for appropriate metadata. Ecological Informatics, 2018, 45, 26-30.	2.3	16
104	Application of the Beer–Lambert Model to Attenuation of Photosynthetically Active Radiation in a Shallow, Eutrophic Lake. Water Resources Research, 2018, 54, 8952-8962.	1.7	16
105	Probabilistic forecast of microcystin toxin using satellite remote sensing, in situ observations and numerical modeling. Environmental Modelling and Software, 2020, 128, 104705.	1.9	16
106	Nutrient fluxes in a eutrophic coastal Louisiana freshwater lake. Environmental Management, 1985, 9, 243-251.	1.2	14
107	Lake Superior water level fluctuation and climatic factors: A dynamic linear model analysis. Journal of Great Lakes Research, 2010, 36, 172-178.	0.8	14
108	Resource vs. Ratio-Dependent Consumer-Resource Models: A Bayesian Perspective. Ecology, 1995, 76, 1986-1990.	1.5	13

#	Article	IF	CITATIONS
109	Assessing the Relationship Between Pfiesteria and Estuarine Fishkills. Ecosystems, 1999, 2, 237-241.	1.6	12
110	Lake Level Coherence Supports Common Driver. Eos, 2008, 89, 389-390.	0.1	12
111	Predicting the Hypoxic-Volume in Chesapeake Bay with the Streeter-Phelps Model: A Bayesian Approach1. Journal of the American Water Resources Association, 2011, 47, 1348-1363.	1.0	12
112	The implications of Simpson's paradox for cross-scale inference among lakes. Water Research, 2019, 163, 114855.	5.3	12
113	MODELING CHANGES IN GROWTH AND DIET ON POLYCHLORINATED BIPHENYL BIOACCUMULATION INCOREGONUS HOYI. , 1997, 7, 981-990.		11
114	A Size-Based Probabilistic Assessment of PCB Exposure from Lake Michigan Fish Consumption. Environmental Science & Technology, 1998, 32, 2325-2330.	4.6	11
115	A Mixed-Order Model to Assess Contaminant Declines. Environmental Monitoring and Assessment, 1999, 55, 435-444.	1.3	11
116	A Bayesian network incorporating observation error to predict phosphorus and chlorophyll a in Saginaw Bay. Environmental Modelling and Software, 2014, 57, 90-100.	1.9	11
117	The statistical power to detect crossâ€scale interactions at macroscales. Ecosphere, 2016, 7, e01417.	1.0	11
118	Rates of decrease of polychlorinated biphenyl concentrations in five species of Lake Michigan salmonids. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 53-59.	0.7	10
119	Bayesian Hierarchical/Multilevel Models for Inference and Prediction Using Cross-System Lake Data. , 2009, , 111-136.		10
120	A cross-scale view of N and P limitation using a Bayesian hierarchical model. Limnology and Oceanography, 2016, 61, 2276-2285.	1.6	10
121	Lake Erie tributary nutrient trend evaluation: Normalizing concentrations and loads to reduce flow variability. Ecological Indicators, 2021, 125, 107601.	2.6	10
122	Differentiating Enterococcus concentration spatial, temporal, and analytical variability in recreational waters. Water Research, 2013, 47, 2141-2152.	5.3	9
123	A method to detect discontinuities in census data. Ecology and Evolution, 2018, 8, 9614-9623.	0.8	9
124	Quantifying parameter uncertainty and assessing the skill of exponential dispersion rainfall simulation models. International Journal of Climatology, 2013, 33, 746-757.	1.5	8
125	Bayesian hierarchical modeling of larval walleye (Sander vitreus) abundance and mortality: Accounting for spatial and temporal variability on a large river. Journal of Great Lakes Research, 2014, 40, 29-40.	0.8	8
126	Current Concentrations of PCBs in Lake Michigan Invertebrates, a Prediction Test, and Corroboration of Hindcast Concentrations. Journal of Great Lakes Research, 1998, 24, 808-821.	0.8	7

#	Article	IF	CITATIONS
127	A Bayesian hierarchical model to guide development and evaluation of substance objectives under the 2012 Great Lakes Water Quality Agreement. Journal of Great Lakes Research, 2014, 40, 49-55.	0.8	7
128	Spatial and temporal patterns of macroscopic benthic primary producers in Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 2014, 40, 53-63.	0.8	7
129	Estimator Bias in a Lake Phosphorus Model with Observation Error. Water Resources Research, 1996, 32, 165-170.	1.7	6
130	Depuration of PCBs in the Lake Michigan Ecosystem. Ecosystems, 2000, 3, 332-343.	1.6	5
131	Univariate Bayesian nonparametric binary regression with application in environmental management. Environmental and Ecological Statistics, 2000, 7, 77-91.	1.9	4
132	Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments. Ecological Modelling, 2012, 245, 199-207.	1.2	4
133	Effect of Hypoxia on Diet of Atlantic Bumpers in the Northern Gulf of Mexico. Transactions of the American Fisheries Society, 2018, 147, 740-748.	0.6	4
134	Response to Comment on "Estimating Ecological Thresholds for Phosphorus in the Everglades― Environmental Science & Technology, 2008, 42, 6772-6773.	4.6	3
135	Nutrient loading and nonstationarity: The importance of differentiating the independent effects of tributary flow and nutrient concentration. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1396.	2.8	3
136	BAYESIAN MULTILEVEL DISCRETE INTERVAL HAZARD ANALYSIS TO PREDICT DICHLORODIPHENYLDICHLOROETHYLENE MORTALITY IN HYALELLA AZTECA BASED ON BODY RESIDUES. Environmental Toxicology and Chemistry, 2009, 28, 2458.	2.2	2
137	WHOLE-FISH VERSUS FILET POLYCHLORINATED-BIPHENYL CONCENTRATIONS: AN ANALYSIS USING CLASSIFICATION AND REGRESSION TREE MODELS. Environmental Toxicology and Chemistry, 1999, 18, 1817.	2.2	2
138	ADAPTIVE IMPLEMENTATION OF TMDLS USING BAYESIAN ANALYSIS. Proceedings of the Water Environment Federation, 2002, 2002, 698-709.	0.0	1
139	UNCERTAINTY BETWEEN THE CRITERION AND THE DESIGNATED USE: IMPLICATIONS FOR STANDARDS AND TMDL MARGIN OF SAFETY. Proceedings of the Water Environment Federation, 2002, 2002, 1223-1228.	0.0	1
140	The news from Saginaw Bay: Where the mussels are strong, the walleye are good-looking, and all the phosphorus is above average. Journal of Great Lakes Research, 2014, 40, 1-3.	0.8	1
141	Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie. Hydrology and Earth System Sciences, 2022, 26, 1993-2017.	1.9	1
142	Science and Limnology Ecology, 1996, 77, 1646.	1.5	0
143	Models in Ecosystem Science. Based on a conference held in Millbrook, New York, May 2001. Edited by CharlesÂD Canham, JonathanÂJ Cole, and , WilliamÂK Lauenroth. Princeton (New Jersey): Princeton University Press. \$79.50 (hardcover); \$35.00 (paper). xvii + 476 p; ill.; index. ISBN: 0–691–09288–5 (hc); 0–691–09289–3 (pb). 2003 Quarterly Review of Biology. 2004. 79. 330-331.	0.0	0