Thomas P Andriacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560787/publications.pdf

Version: 2024-02-01

43 papers 4,847 citations

257450 24 h-index 289244 40 g-index

43 all docs

43 docs citations

43 times ranked

3260 citing authors

#	Article	IF	CITATIONS
1	Vertical ground reaction force 2 years after anterior cruciate ligament reconstruction predicts 10â€year patientâ€reported outcomes. Journal of Orthopaedic Research, 2022, 40, 129-137.	2.3	5
2	Cartilage oligomeric matrix protein responses to a mechanical stimulus associate with ambulatory loading in individuals with anterior cruciate ligament reconstruction. Journal of Orthopaedic Research, 2022, 40, 791-798.	2.3	4
3	Analyzing Femorotibial Cartilage Thickness Using Anatomically Standardized Maps: Reproducibility and Reference Data. Journal of Clinical Medicine, 2021, 10, 461.	2.4	6
4	Patient-Reported Outcomes and Knee Mechanics Correlate With Patellofemoral Deep Cartilage UTE-T2* 2 Years After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2021, 49, 675-683.	4.2	10
5	Visualizing preâ€osteoarthritis: Integrating MRI UTEâ€T2* with mechanics and biology to combat osteoarthritisâ€"The 2019 Elizabeth Winston Lanier Kappa Delta Award. Journal of Orthopaedic Research, 2021, 39, 1585-1595.	2.3	10
6	Intermittent vibrational stimulation enhances mobility during stair navigation in patients with knee pain. Gait and Posture, 2021, 86, 125-131.	1.4	2
7	Femoral Acetabular Impingement Labral Pathology on MRI is Correlated with Greater Hip Flexion and Decreased Abduction in Collegiate Water Polo Players - A Pilot Study. Journal of ISAKOS, 2021, 7, 7-12.	2.3	O
8	Utilizing the somatosensory system via vibratory stimulation to mitigate knee pain during walking: Randomized clinical trial. Gait and Posture, 2020, 80, 37-43.	1.4	4
9	Changes in stair ascent biomechanics two to eight years after ACL reconstruction are associated with patient-reported outcomes. Gait and Posture, 2019, 69, 91-95.	1.4	5
10	Establishing outcome measures in early knee osteoarthritis. Nature Reviews Rheumatology, 2019, 15, 438-448.	8.0	88
11	Activating the somatosensory system enhances net quadriceps moment during gait. Journal of Biomechanics, 2019, 82, 149-155.	2.1	8
12	Sensitivity of serum concentration of cartilage biomarkers to 21â€days of bed rest. Journal of Orthopaedic Research, 2018, 36, 1465-1471.	2.3	25
13	Anatomically Standardized Maps Reveal Distinct Patterns of Cartilage Thickness With Increasing Severity of Medial Compartment Knee Osteoarthritis. Journal of Orthopaedic Research, 2017, 35, 2442-2451.	2.3	33
14	The Nature of Age-Related Differences in Knee Function during Walking: Implication for the Development of Knee Osteoarthritis. PLoS ONE, 2016, 11, e0167352.	2.5	12
15	Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years. Journal of Biomechanics, 2016, 49, 1859-1864.	2.1	47
16	General scheme to reduce the knee adduction moment by modifying a combination of gait variables. Journal of Orthopaedic Research, 2016, 34, 1547-1556.	2.3	74
17	Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing. American Journal of Sports Medicine, 2016, 44, 1540-1546.	4.2	24
18	The role of inflammation in the initiation of osteoarthritis after meniscal damage. Journal of Biomechanics, 2015, 48, 1420-1426.	2.1	56

#	Article	IF	CITATIONS
19	Relationship Between Knee Mechanics and Time Since Injury in ACL-Deficient Knees Without Signs of Osteoarthritis. American Journal of Sports Medicine, 2015, 43, 1189-1196.	4.2	18
20	Dance between biology, mechanics, and structure: A systems-based approach to developing osteoarthritis prevention strategies. Journal of Orthopaedic Research, 2015, 33, 939-947.	2.3	70
21	Alterations in Knee Kinematics After Partial Medial Meniscectomy Are Activity Dependent. American Journal of Sports Medicine, 2015, 43, 1399-1407.	4.2	26
22	New insight in the relationship between regional patterns of knee cartilage thickness, osteoarthritis disease severity, and gait mechanics. Journal of Biomechanics, 2015, 48, 3868-3875.	2.1	67
23	A Systems View of Risk Factors for Knee Osteoarthritis Reveals Insights into the Pathogenesis of the Disease. Annals of Biomedical Engineering, 2015, 43, 376-387.	2.5	106
24	Evidence for joint moment asymmetry in healthy populations during gait. Gait and Posture, 2014, 40, 526-531.	1.4	36
25	The Nature of In Vivo Mechanical Signals That Influence Cartilage Health and Progression to Knee Osteoarthritis. Current Rheumatology Reports, 2014, 16, 463.	4.7	90
26	Response to letter to the editor regarding "Application of principal component analysis in clinical gait research― Journal of Biomechanics, 2014, 47, 1555-1556.	2.1	5
27	The in vivo relationship between anterior neutral tibial position and loss of knee extension after transtibial ACL reconstruction. Knee, 2014, 21, 74-79.	1.6	15
28	Special Issues No.3 : Measurement Technique for Ergonomics, Section 1-1 : "Measurement of Body Motion― Ningen Kogaku = the Japanese Journal of Ergonomics, 2014, 50, 172-181.	0.1	3
29	Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. Journal of Biomechanics, 2013, 46, 515-520.	2.1	116
30	Sensitivity of gait parameters to the effects of antiâ€inflammatory and opioid treatments in knee osteoarthritis patients. Journal of Orthopaedic Research, 2012, 30, 1118-1124.	2.3	49
31	Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain. Arthritis Care and Research, 2010, 62, 501-509.	3.4	134
32	Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee. Journal of Bone and Joint Surgery - Series A, 2009, 91, 95-101.	3.0	394
33	Inter-Subject Variability in Ground Reaction Force - Walking Speed Relationship Is Related to Different Motion of the Center of Mass. , 2009, , .		1
34	Knee Kinematics, Cartilage Morphology, and Osteoarthritis after ACL Injury. Medicine and Science in Sports and Exercise, 2008, 40, 215-222.	0.4	306
35	Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models., 2007,,.		60
36	Rotational Changes at the Knee after ACL Injury Cause Cartilage Thinning. Clinical Orthopaedics and Related Research, 2006, 442, 39-44.	1.5	285

#	Article	IF	CITATIONS
37	The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Current Opinion in Rheumatology, 2006, 18, 514-518.	4.3	476
38	Interactions between kinematics and loading during walking for the normal and ACL deficient knee. Journal of Biomechanics, 2005, 38, 293-298.	2.1	333
39	Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis and Rheumatism, 2005, 52, 2835-2844.	6.7	574
40	A Framework for the in Vivo Pathomechanics of Osteoarthritis at the Knee. Annals of Biomedical Engineering, 2004, 32, 447-457.	2.5	830
41	Secondary motions of the knee during weight bearing and non-weight bearing activities. Journal of Orthopaedic Research, 2004, 22, 794-800.	2.3	123
42	Mechanical loads at the knee joint during deep flexion. Journal of Orthopaedic Research, 2002, 20, 881-886.	2.3	192
43	Dynamic Function after Anterior Cruciate Ligament Reconstruction with Autologous Patellar Tendon. American Journal of Sports Medicine, 2001, 29, 36-41.	4.2	125