Jonathan Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5607809/publications.pdf

Version: 2024-02-01

41 papers

2,541 citations

279487 23 h-index 329751 37 g-index

42 all docs 42 docs citations

times ranked

42

3596 citing authors

#	Article	IF	CITATIONS
1	From hurdle to springboard: The macrophage as target in biomaterial-based bone regeneration strategies. Bone, 2022, 159, 116389.	1.4	17
2	Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules, 2022, 12, 837.	1.8	9
3	Structured nanofilms comprising Laponite \hat{A}^{\otimes} and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Materials Science and Engineering C, 2021, 118, 111440.	3.8	21
4	The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomaterials Science, 2021, 9, 3150-3161.	2.6	20
5	Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers. ACS Biomaterials Science and Engineering, 2021, 7, 2716-2722.	2.6	5
6	<i>De Novo</i> Design of Functional Coassembling Organicâ€"Inorganic Hydrogels for Hierarchical Mineralization and Neovascularization. ACS Nano, 2021, 15, 11202-11217.	7.3	38
7	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Diterfaces, 2021, 13, 32624-32639.	4.0	27
8	Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering. Methods in Molecular Biology, 2021, 2147, 63-72.	0.4	4
9	Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials. Materials, 2020, 13, 168.	1.3	15
10	Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization. Nature Communications, 2020, 11, 1365.	5.8	59
11	Skeletal Stem Cells—Phenotype and Function. , 2020, , 9-20.		0
12	Growthâ€Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation. Advanced Functional Materials, 2020, 30, 1906205.	7.8	65
13	Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication, 2020, 12, 035010.	3.7	73
14	Nanoclay–Polyamine Composite Hydrogel for Topical Delivery of Nitric Oxide Gas via Innate Gelation Characteristics of Laponite. Biomacromolecules, 2020, 21, 2096-2103.	2.6	22
15	Injectable nanoclay gels for angiogenesis. Acta Biomaterialia, 2019, 100, 378-387.	4.1	46
16	Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Materials Today Bio, 2019, 4, 100028.	2.6	56
17	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	3.7	142
18	The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials, 2019, 209, 10-24.	5.7	169

#	Article	IF	CITATIONS
19	Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.	5.7	201
20	Selfâ€Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments. Advanced Healthcare Materials, 2018, 7, e1800331.	3.9	38
21	Harnessing clay nano-particles for stem-cell driven tissue regeneration, EPSRC. Impact, 2018, 2018, 26-28.	0.0	0
22	Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 2017, 9, 034103.	3.7	238
23	Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials, 2016, 99, 16-23.	5.7	73
24	A review of hydrogel use in fracture healing and bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 187-198.	1.3	121
25	A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis., 2016, 31, 312-322.		103
26	Cartilage and Bone Regeneration. , 2015, , 529-582.		7
27	Cold water cleaning of brain proteins, biofilm and bone – harnessing an ultrasonically activated stream. Physical Chemistry Chemical Physics, 2015, 17, 20574-20579.	1.3	25
28	From bench to clinic and back: skeletal stem cells and impaction bone grafting for regeneration of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 779-786.	1.3	14
29	Concise Review: Bridging the Gap: Bone Regeneration Using Skeletal Stem Cell-Based Strategies—Where Are We Now?. Stem Cells, 2014, 32, 35-44.	1.4	109
30	A tissue engineering strategy for the treatment of avascular necrosis of the femoral head. Journal of the Royal College of Surgeons of Edinburgh, 2013, 11, 319-325.	0.8	18
31	Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells. Cell and Tissue Research, 2013, 352, 237-247.	1.5	30
32	Enhancing the osteogenic efficacy of human bone marrow aspirate: concentrating osteoprogenitors using wave-assisted filtration. Cytotherapy, 2013, 15, 242-252.	0.3	27
33	Clay: New Opportunities for Tissue Regeneration and Biomaterial Design. Advanced Materials, 2013, 25, 4069-4086.	11.1	271
34	Skeletal Regeneration: application of nanotopography and biomaterials for skeletal stem cell based bone repair. Inflammation and Regeneration, 2012, 32, 072-089.	1.5	8
35	In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration. Lab on A Chip, $2011, 11, 1206$.	3.1	22
36	Clay Gels For the Delivery of Regenerative Microenvironments. Advanced Materials, 2011, 23, 3304-3308.	11.1	147

#	Article	IF	CITATIONS
37	Clay Hydrogels: Clay Gels For the Delivery of Regenerative Microenvironments (Adv. Mater. 29/2011). Advanced Materials, 2011, 23, 3303-3303.	11.1	1
38	Taking tissue engineering principles into theatre: retrieval analysis from a clinically translated case. Regenerative Medicine, 2011 , 6 , 461 - 467 .	0.8	9
39	Characterisation of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modelling. Bone, 2010, 46, 496-503.	1.4	29
40	Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2008, 29, 3105-3116.	5.7	100
41	Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering. Archives of Biochemistry and Biophysics, 2008, 473, 124-131.	1.4	161