Jonathan Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5607809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clay: New Opportunities for Tissue Regeneration and Biomaterial Design. Advanced Materials, 2013, 25, 4069-4086.	21.0	271
2	Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 2017, 9, 034103.	7.1	238
3	Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.	11.4	201
4	The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials, 2019, 209, 10-24.	11.4	169
5	Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering. Archives of Biochemistry and Biophysics, 2008, 473, 124-131.	3.0	161
6	Clay Gels For the Delivery of Regenerative Microenvironments. Advanced Materials, 2011, 23, 3304-3308.	21.0	147
7	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	7.1	142
8	A review of hydrogel use in fracture healing and bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 187-198.	2.7	121
9	Concise Review: Bridging the Gap: Bone Regeneration Using Skeletal Stem Cell-Based Strategies—Where Are We Now?. Stem Cells, 2014, 32, 35-44.	3.2	109
10	A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis. , 2016, 31, 312-322.		103
11	Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2008, 29, 3105-3116.	11.4	100
12	Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials, 2016, 99, 16-23.	11.4	73
13	Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication, 2020, 12, 035010.	7.1	73
14	Growthâ€Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation. Advanced Functional Materials, 2020, 30, 1906205.	14.9	65
15	Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization. Nature Communications, 2020, 11, 1365.	12.8	59
16	Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Materials Today Bio, 2019, 4, 100028.	5.5	56
17	Injectable nanoclay gels for angiogenesis. Acta Biomaterialia, 2019, 100, 378-387.	8.3	46
18	Selfâ€Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments. Advanced Healthcare Materials, 2018, 7, e1800331.	7.6	38

JONATHAN DAWSON

#	Article	IF	CITATIONS
19	<i>De Novo</i> Design of Functional Coassembling Organic–Inorganic Hydrogels for Hierarchical Mineralization and Neovascularization. ACS Nano, 2021, 15, 11202-11217.	14.6	38
20	Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells. Cell and Tissue Research, 2013, 352, 237-247.	2.9	30
21	Characterisation of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modelling. Bone, 2010, 46, 496-503.	2.9	29
22	Enhancing the osteogenic efficacy of human bone marrow aspirate: concentrating osteoprogenitors using wave-assisted filtration. Cytotherapy, 2013, 15, 242-252.	0.7	27
23	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.	8.0	27
24	Cold water cleaning of brain proteins, biofilm and bone – harnessing an ultrasonically activated stream. Physical Chemistry Chemical Physics, 2015, 17, 20574-20579.	2.8	25
25	In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration. Lab on A Chip, 2011, 11, 1206.	6.0	22
26	Nanoclay–Polyamine Composite Hydrogel for Topical Delivery of Nitric Oxide Gas via Innate Gelation Characteristics of Laponite. Biomacromolecules, 2020, 21, 2096-2103.	5.4	22
27	Structured nanofilms comprising Laponite® and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Materials Science and Engineering C, 2021, 118, 111440.	7.3	21
28	The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomaterials Science, 2021, 9, 3150-3161.	5.4	20
29	A tissue engineering strategy for the treatment of avascular necrosis of the femoral head. Journal of the Royal College of Surgeons of Edinburgh, 2013, 11, 319-325.	1.8	18
30	From hurdle to springboard: The macrophage as target in biomaterial-based bone regeneration strategies. Bone, 2022, 159, 116389.	2.9	17
31	Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials. Materials, 2020, 13, 168.	2.9	15
32	From bench to clinic and back: skeletal stem cells and impaction bone grafting for regeneration of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 779-786.	2.7	14
33	Taking tissue engineering principles into theatre: retrieval analysis from a clinically translated case. Regenerative Medicine, 2011, 6, 461-467.	1.7	9
34	Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules, 2022, 12, 837.	4.0	9
35	Skeletal Regeneration: application of nanotopography and biomaterials for skeletal stem cell based bone repair. Inflammation and Regeneration, 2012, 32, 072-089.	3.7	8
36	Cartilage and Bone Regeneration. , 2015, , 529-582.		7

3

#	Article	IF	CITATIONS
37	Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers. ACS Biomaterials Science and Engineering, 2021, 7, 2716-2722.	5.2	5
38	Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering. Methods in Molecular Biology, 2021, 2147, 63-72.	0.9	4
39	Clay Hydrogels: Clay Gels For the Delivery of Regenerative Microenvironments (Adv. Mater. 29/2011). Advanced Materials, 2011, 23, 3303-3303.	21.0	1
40	Skeletal Stem Cells—Phenotype and Function. , 2020, , 9-20.		0
41	Harnessing clay nano-particles for stem-cell driven tissue regeneration, EPSRC. Impact, 2018, 2018, 26-28.	0.1	0