
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5607404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cordyceps fungi: natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology, 2009, 61, 279-291.	1.2	284
2	<i><scp>A</scp>a<scp>ORA</scp></i> , a trichomeâ€specific <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor of <i><scp>A</scp>rtemisia annua</i> , is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to <i><scp>B</scp>otrytis cinerea</i> . New Phytologist, 2013, 198, 1191-1202.	3.5	255
3	The jasmonateâ€responsive Aa <scp>MYC</scp> 2 transcription factor positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2016, 210, 1269-1281.	3.5	230
4	The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Molecular Plant, 2018, 11, 776-788.	3.9	205
5	A Basic Leucine Zipper Transcription Factor, AabZIP1, Connects Abscisic Acid Signaling with Artemisinin Biosynthesis in Artemisia annua. Molecular Plant, 2015, 8, 163-175.	3.9	198
6	Development of transgenic <i>Artemisia annua</i> (Chinese wormwood) plants with an enhanced content of artemisinin, an effective antiâ€malarial drug, by hairpinâ€RNAâ€mediated gene silencing. Biotechnology and Applied Biochemistry, 2009, 52, 199-207.	1.4	193
7	<scp>GLANDULAR TRICHOME</scp> â€ <scp>SPECIFIC WRKY</scp> 1 promotes artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2017, 214, 304-316.	3.5	171
8	<scp>HOMEODOMAIN PROTEIN</scp> 1 is required for jasmonateâ€mediated glandular trichome initiation in <i>Artemisia annua</i> . New Phytologist, 2017, 213, 1145-1155.	3.5	170
9	Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry Reviews, 2016, 15, 221-250.	3.1	146
10	A novel HDâ€ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in <i>Artemisia annua</i> . New Phytologist, 2018, 218, 567-578.	3.5	123
11	The roles of <i>Aa<scp>MIXTA</scp>1</i> in regulating the initiation of glandular trichomes and cuticle biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2018, 217, 261-276.	3.5	119
12	Plant Metabolic Engineering Strategies for the Production of Pharmaceutical Terpenoids. Frontiers in Plant Science, 2016, 7, 1647.	1.7	106
13	The genome evolution and domestication of tropical fruit mango. Genome Biology, 2020, 21, 60.	3.8	104
14	Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia (Poland), 2009, 64, 319-323.	0.8	101
15	Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in <i>Artemisia annua</i> . Science Advances, 2018, 4, eaas9357.	4.7	101
16	OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of <i>Artemisia annua</i> . Plant Cell, 2015, 27, 286-301.	3.1	96
17	Overexpression of a Novel NAC Domain-Containing Transcription Factor Gene (<i>AaNAC1</i>) Enhances the Content of Artemisinin and Increases Tolerance to Drought and <i>Botrytis cinerea</i> in <i>Artemisia annua</i> . Plant and Cell Physiology, 2016, 57, 1961-1971.	1.5	95
18	Transgenic approach to increase artemisinin content in Artemisia annua L Plant Cell Reports, 2014, 33, 605-615.	2.8	86

#	Article	IF	CITATIONS
19	A G-Protein Î ² Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis. PLoS ONE, 2015, 10, e0116385.	1.1	70
20	Branch Pathway Blocking in <i>Artemisia annua</i> is a Useful Method for Obtaining High Yield Artemisinin. Plant and Cell Physiology, 2016, 57, 588-602.	1.5	70
21	Light-Induced Artemisinin Biosynthesis Is Regulated by the bZIP Transcription Factor AaHY5 in <i>Artemisia annua</i> . Plant and Cell Physiology, 2019, 60, 1747-1760.	1.5	70
22	Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua. Frontiers in Plant Science, 2017, 8, 971.	1.7	69
23	AaWRKY9 contributes to light―and jasmonateâ€mediated to regulate the biosynthesis of artemisinin in <i>Artemisia annua</i> . New Phytologist, 2021, 231, 1858-1874.	3.5	67
24	Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regulation, 2010, 60, 133-141.	1.8	54
25	Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia (Poland), 2007, 62, 386-393.	0.8	53
26	Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. Trends in Plant Science, 2020, 25, 466-476.	4.3	52
27	AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene β-Caryophyllene Transport in Artemisia annua. Frontiers in Plant Science, 2017, 8, 723.	1.7	50
28	CrERF5, an AP2/ERF Transcription Factor, Positively Regulates the Biosynthesis of Bisindole Alkaloids and Their Precursors in Catharanthus roseus. Frontiers in Plant Science, 2019, 10, 931.	1.7	47
29	The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua. Journal of Experimental Botany, 2019, 70, 4835-4848.	2.4	47
30	Overexpression of <i>AaWRKY1</i> Leads to an Enhanced Content of Artemisinin in <i>Artemisia annua</i> . BioMed Research International, 2016, 2016, 1-9.	0.9	46
31	Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua. Journal of Experimental Botany, 2019, 70, 3969-3979.	2.4	46
32	Jasmonate―and abscisic acidâ€activated AaGSW1â€AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in <i>Artemisia annua</i> . Plant Biotechnology Journal, 2021, 19, 1412-1428.	4.1	45
33	Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Functional Plant Biology, 2004, 31, 73.	1.1	43
34	The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in <i>Artemisia annua</i> . Journal of Experimental Botany, 2021, 72, 1691-1701.	2.4	41
35	An HDâ€ZIPâ€MYB complex regulates glandular secretory trichome initiation in <i>Artemisia annua</i> . New Phytologist, 2021, 231, 2050-2064.	3.5	41
36	ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. Journal of Experimental Botany, 2018, 69, 1109-1123.	2.4	40

#	Article	IF	CITATIONS
37	AaABF3, an Abscisic Acid–Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua. Frontiers in Plant Science, 2018, 9, 1777.	1.7	37
38	An R2R3-MYB Transcription Factor Positively Regulates the Glandular Secretory Trichome Initiation in Artemisia annua L. Frontiers in Plant Science, 2021, 12, 657156.	1.7	36
39	Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiologia Plantarum, 2004, 122, 210-218.	2.6	35
40	Molecular Cloning and Characterization of a Trichome-Specific Promoter of Artemisinic Aldehyde Δ11(13) Reductase (DBR2) in Artemisia annua. Plant Molecular Biology Reporter, 2014, 32, 82-91.	1.0	35
41	Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell, Tissue and Organ Culture, 2017, 129, 251-259.	1.2	35
42	The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L Plant Biotechnology Reports, 2013, 7, 287-295.	0.9	34
43	A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1014, 10-16.	1.2	34
44	ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Functional and Integrative Genomics, 2014, 14, 717-730.	1.4	32
45	New insights into artemisinin regulation. Plant Signaling and Behavior, 2017, 12, e1366398.	1.2	32
46	ldentification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Molecular Biology, 2005, 39, 191-199.	0.4	31
47	The G-Protein Î ² Subunit AGB1 Promotes Hypocotyl Elongation through Inhibiting Transcription Activation Function of BBX21 inÂArabidopsis. Molecular Plant, 2017, 10, 1206-1223.	3.9	30
48	The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicology and Environmental Safety, 2020, 206, 111202.	2.9	28
49	Overexpression of Allene Oxide Cyclase Improves the Biosynthesis of Artemisinin in Artemisia annua L PLoS ONE, 2014, 9, e91741.	1.1	27
50	Reference Gene Selection for Gene Expression Studies Using Quantitative Real-Time PCR Normalization in Atropa belladonna. Plant Molecular Biology Reporter, 2014, 32, 1002-1014.	1.0	27
51	Jasmonic acidâ€responsive AabHLH1 positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . Biotechnology and Applied Biochemistry, 2019, 66, 369-375.	1.4	27
52	The SPB-Box Transcription Factor AaSPL2 Positively Regulates Artemisinin Biosynthesis in Artemisia annua L. Frontiers in Plant Science, 2019, 10, 409.	1.7	25
53	The YABBY Family Transcription Factor AaYABBY5 Directly Targets Cytochrome P450 Monooxygenase (CYP71AV1) and Double-Bond Reductase 2 (DBR2) Involved in Artemisinin Biosynthesis in Artemisia Annua. Frontiers in Plant Science, 2019, 10, 1084.	1.7	24
54	Transcriptional regulation of flavonoid biosynthesis in <i>Artemisia annua</i> by AaYABBY5. Horticulture Research, 2021, 8, 257.	2.9	24

#	Article	IF	CITATIONS
55	Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L Plant Physiology and Biochemistry, 2021, 163, 189-200.	2.8	23
56	Molecular Cloning and Characterization of a Novel Gossypium barbadense L. RAD-Like Gene. Plant Molecular Biology Reporter, 2011, 29, 324-333.	1.0	22
57	AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Science, 2021, 308, 110920.	1.7	21
58	AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua. Horticulture Research, 2021, 8, 217.	2.9	21
59	Identification of Putative Artemisia annua ABCG Transporter Unigenes Related to Artemisinin Yield Following Expression Analysis in Different Plant Tissues and in Response to Methyl Jasmonate and Abscisic Acid Treatments. Plant Molecular Biology Reporter, 2012, 30, 838-847.	1.0	20
60	Characterization of the Promoter of Artemisia annua Amorpha-4,11-diene Synthase (ADS) Gene Using Homologous and Heterologous Expression as well as Deletion Analysis. Plant Molecular Biology Reporter, 2014, 32, 406-418.	1.0	20
61	The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in <i>Artemisia annua</i> . Journal of Integrative Plant Biology, 2022, 64, 1212-1228.	4.1	20
62	G-protein \hat{I}^2 subunit AGB1 positively regulates salt stress tolerance in Arabidopsis. Journal of Integrative Agriculture, 2015, 14, 314-325.	1.7	19
63	Roles of MPBQ-MT in Promoting $\hat{I} \pm / \hat{I}^3$ -Tocopherol Production and Photosynthesis under High Light in Lettuce. PLoS ONE, 2016, 11, e0148490.	1.1	19
64	AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua. Frontiers in Plant Science, 2018, 9, 413.	1.7	17
65	Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharmaceutica Sinica B, 2022, 12, 1500-1513.	5.7	17
66	AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. Plant Science, 2022, 317, 111172.	1.7	17
67	Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L Plant Cell, Tissue and Organ Culture, 2017, 130, 61-72.	1.2	16
68	A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L Plant Methods, 2021, 17, 106.	1.9	16
69	Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell, Tissue and Organ Culture, 2016, 126, 469-480.	1.2	15
70	Characterization of the Jasmonate Biosynthetic Gene Allene Oxide Cyclase in Artemisia annua L., Source of the Antimalarial Drug Artemisinin. Plant Molecular Biology Reporter, 2011, 29, 489-497.	1.0	14
71	Type 2C Phosphatase 1 of <i>Artemisia annua</i> L. Is a Negative Regulator of ABA Signaling. BioMed Research International, 2014, 2014, 1-9.	0.9	14
72	lsolation and characterization of BnMKK1 responsive to multiple stresses and affecting plant architecture in tobacco. Acta Physiologiae Plantarum, 2014, 36, 1313-1324.	1.0	14

#	Article	IF	CITATIONS
73	The Transcription Factor Aabzip9 Positively Regulates the Biosynthesis of Artemisinin in Artemisia annua. Frontiers in Plant Science, 2019, 10, 1294.	1.7	14
74	Effect of wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua. Russian Journal of Plant Physiology, 2010, 57, 882-886.	0.5	13
75	Stress associated protein 1 regulates the development of glandular trichomes in Artemisia annua. Plant Cell, Tissue and Organ Culture, 2019, 139, 249-259.	1.2	13
76	Molecular cloning, characterization and heterologous expression in Saccharomyces cerevisiae of a mevalonate diphosphate decarboxylase cDNA from Ginkgo biloba. Physiologia Plantarum, 2006, 127, 19-27.	2.6	11
77	AaABCG40 Enhances Artemisinin Content and Modulates Drought Tolerance in Artemisia annua. Frontiers in Plant Science, 2020, 11, 950.	1.7	11
78	Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persica). Acta Physiologiae Plantarum, 2011, 33, 2003-2010.	1.0	9
79	Expression of Bioactive Thymosin Alpha 1 (Tα1) in Marker-free Transgenic Lettuce (Lactuca sativa). Plant Molecular Biology Reporter, 2011, 29, 466-472.	1.0	8
80	Over-expression of the Gr5 aroA gene from glyphosate-contaminated soil confers high tolerance to glyphosate in tobacco. Molecular Breeding, 2014, 33, 197-208.	1.0	8
81	AaWRKY4 upregulates artemisinin content through boosting the expressions of key enzymes in artemisinin biosynthetic pathway. Plant Cell, Tissue and Organ Culture, 2021, 146, 97-105.	1.2	8
82	Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L International Journal of Molecular Sciences, 2021, 22, 8859.	1.8	8
83	Matching is the Key Factor to Improve the Production of Patchoulol in the Plant Chassis of <i>Marchantia paleacea</i> . ACS Omega, 2020, 5, 33028-33038.	1.6	8
84	Biological Activities of Artemisinins Beyond Anti-Malarial: a Review. Tropical Plant Biology, 2019, 12, 231-243.	1.0	7
85	Overexpression of blue light receptor <i>AaCRY1</i> improves artemisinin content in <i>Artemisia annua</i> L Biotechnology and Applied Biochemistry, 2021, 68, 338-344.	1.4	7
86	cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica oleracea var. acephala. Physiologia Plantarum, 2004, 121, 578-585.	2.6	6
87	Isolation and Expression Profile Analysis of a New cDNA Encoding 5-alpha-taxadienol-10-beta-hydroxylase from Taxus media. Journal of Plant Biochemistry and Biotechnology, 2006, 15, 1-5.	0.9	6
88	Comprehensive Map of the <i>Artemisia annua</i> Proteome and Quantification of Differential Protein Expression in Chemotypes Producing High versus Low Content of Artemisinin. Proteomics, 2020, 20, e1900310.	1.3	6
89	Molecular characterization and expression analysis of a gene encoding mannose-binding lectin from bulb of Zephyranthes grandiflora. Biologia (Poland), 2006, 61, 671-677.	0.8	5
90	Tâ€shaped trichomeâ€specific expression of monoterpene synthase ADH2 using promoter–βâ€GUS fusion in transgenic <i>Artemisia annua</i> L. Biotechnology and Applied Biochemistry, 2016, 63, 834-840.	1.4	5

#	Article	IF	CITATIONS
91	The Artemisia annua FLOWERING LOCUS T Homolog 2, AaFT2, is a key regulator of flowering time. Plant Physiology and Biochemistry, 2018, 126, 197-205.	2.8	5
92	The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L Journal of Plant Physiology, 2022, 274, 153712.	1.6	5
93	Metabolic engineering of vitamin C production in Arabidopsis. Biotechnology and Bioprocess Engineering, 2015, 20, 677-684.	1.4	3
94	High-Level Patchoulol Biosynthesis in Artemisia annua L Frontiers in Bioengineering and Biotechnology, 2020, 8, 621127.	2.0	3
95	Molecular cloning of BPL1, a pectate lyase-like gene in Brassica napus. Biologia (Poland), 2006, 61, 263-267.	0.8	0
96	Cloning of taxane 2α-O-benzoyltransferase (TBT) genomic DNA from Taxus. Biologia (Poland), 2006, 61, 327-329.	0.8	0
97	Secondary Products. , 0, , 297-315.		0
98	Coupling degree analysis on the fermentation of anti-cancer endophyte FSN002 by fuzzy kinetic model. , 2011, , .		0