Ambalangodage C Jayasuriya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in organoid engineering: A comprehensive review. Applied Materials Today, 2022, 29, 101582.	2.3	8
2	Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. Materials Science and Engineering C, 2021, 120, 111748.	3.8	29
3	Evaluation of the optimal dosage of BMP-9 through the comparison of bone regeneration induced by BMP-9 versus BMP-2 using an injectable microparticle embedded thermosensitive polymeric carrier in a rat cranial defect model. Materials Science and Engineering C, 2021, 127, 112252.	3.8	2
4	FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Materials Science and Engineering C, 2021, 130, 112466.	3.8	134
5	Fabrication of porous chitosan particles using a novel two-step porogen leaching and lyophilization method with the label-free multivariate spectral assessment of live adhered cells. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112094.	2.5	3
6	Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479.	2.3	266
7	Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering C, 2020, 110, 110698.	3.8	396
8	Thermoresponsive Injectable Microparticle–Gel Composites with Recombinant BMP-9 and VEGF Enhance Bone Formation in Rats. ACS Biomaterials Science and Engineering, 2019, 5, 4587-4600.	2.6	20
9	Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Materials Science and Engineering C, 2019, 102, 1-11.	3.8	58
10	Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids and Surfaces B: Biointerfaces, 2018, 165, 158-164.	2.5	12
11	Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. European Journal of Pharmaceutical Sciences, 2018, 114, 199-209.	1.9	243
12	Injectable nanosilica–chitosan microparticles for bone regeneration applications. Journal of Biomaterials Applications, 2018, 32, 813-825.	1.2	19
13	Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. Materials Science and Engineering C, 2018, 91, 330-339.	3.8	46
14	Chitosan microparticles based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydrate Polymers, 2018, 199, 426-436.	5.1	20
15	Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. Journal of Functional Biomaterials, 2017, 8, 49.	1.8	53
16	Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Materials Science and Engineering C, 2016, 69, 505-512.	3.8	61
17	The use of nanomaterials to treat bone infections. Materials Science and Engineering C, 2016, 67, 822-833.	3.8	33
18	Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Materials Science and Engineering C, 2016, 67, 409-417.	3.8	26

#	Article	IF	CITATIONS
19	Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Materials Science and Engineering C, 2016, 69, 733-743.	3.8	62
20	Bone regeneration using injectable BMP-7 loaded chitosan microparticles in rat femoral defect. Materials Science and Engineering C, 2016, 63, 596-608.	3.8	28
21	The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation. Materials Science and Engineering C, 2015, 52, 129-134.	3.8	17
22	Cross-linked chitosan improves the mechanical properties of calcium phosphate–chitosan cement. Materials Science and Engineering C, 2015, 54, 14-19.	3.8	26
23	Current wound healing procedures and potential care. Materials Science and Engineering C, 2015, 48, 651-662.	3.8	368
24	Injectable chitosan microparticles incorporating bone morphogenetic protein-7 for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	12
25	Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. Journal of Biomedical Materials Research - Part A, 2014, 102, 2704-2712.	2.1	57
26	The effect of graphene substrate on osteoblast cell adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3282-3290.	2.1	57
27	IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions. Materials Science and Engineering C, 2014, 42, 506-516.	3.8	23
28	An overview of recent advances in designing orthopedic and craniofacial implants. Journal of Biomedical Materials Research - Part A, 2013, 101, 3349-3364.	2.1	156
29	ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films. Materials Science and Engineering C, 2013, 33, 3688-3696.	3.8	48
30	Investigation of potential injectable polymeric biomaterials for bone regeneration. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2436-2447.	2.1	97
31	Mechanical properties of human amniotic fluid stem cells using nanoindentation. Journal of Biomechanics, 2013, 46, 1524-1530.	0.9	11
32	Secretion of growth factors from macrophages when cultured with microparticles. Journal of Biomedical Materials Research - Part A, 2013, 101, 3170-3180.	2.1	8
33	The effect of graphene substrate on osteoblast cell adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2013, , n/a-n/a.	2.1	0
34	In vitro degradation behavior of chitosan based hybrid microparticles. Journal of Biomedical Science and Engineering, 2011, 04, 383-390.	0.2	16
35	Mesenchymal stem cell function on hybrid organic/inorganic microparticles in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 340-348.	1.3	19
36	Rapid biomineralization of chitosan microparticles to apply in bone regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 393-398.	1.7	21

#	Article	IF	CITATIONS
37	Evaluation of cross-linked chitosan microparticles for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 532-542.	1.3	20
38	Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair. Journal of Materials Science: Materials in Medicine, 2009, 20, 1637-1644.	1.7	19
39	Controlled release of insulin-like growth factor-1 and bone marrow stromal cell function of bone-like mineral layer-coated poly(lactic-co-glycolic acid) scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 43-49.	1.3	15
40	Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1076-1086.	2.1	33