
Seralynne D Vann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1726-1731.	7.1	1,212
2	What does the retrosplenial cortex do?. Nature Reviews Neuroscience, 2009, 10, 792-802.	10.2	1,170
3	Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. European Journal of Neuroscience, 2010, 31, 2292-2307.	2.6	384
4	The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Frontiers in Systems Neuroscience, 2013, 7, 45.	2.5	258
5	A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience, 2008, 11, 834-842.	14.8	256
6	Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia, 2005, 43, 1810-1823.	1.6	252
7	The mammillary bodies: two memory systems in one?. Nature Reviews Neuroscience, 2004, 5, 35-44.	10.2	247
8	Fos Imaging Reveals Differential Patterns of Hippocampal and Parahippocampal Subfield Activation in Rats in Response to Different Spatial Memory Tests. Journal of Neuroscience, 2000, 20, 2711-2718.	3.6	243
9	The Cognitive Thalamus as a Gateway to Mental Representations. Journal of Neuroscience, 2019, 39, 3-14.	3.6	239
10	Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory Behavioral Neuroscience, 2002, 116, 85-94.	1.2	168
11	Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5442-5447.	7.1	166
12	Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia, 2010, 48, 2316-2327.	1.6	137
13	ldentifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: A simple problem with a complex answer. Hippocampus, 2000, 10, 466-474.	1.9	120
14	Evidence of a Spatial Encoding Deficit in Rats with Lesions of the Mammillary Bodies or Mammillothalamic Tract. Journal of Neuroscience, 2003, 23, 3506-3514.	3.6	118
15	Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research, 2004, 155, 97-108.	2.2	109
16	Theta-Modulated Head Direction Cells in the Rat Anterior Thalamus. Journal of Neuroscience, 2011, 31, 9489-9502.	3.6	107
17	Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience, 2000, 101, 983-991.	2.3	106
18	The mammillary bodies and memory. Progress in Brain Research, 2015, 219, 163-185.	1.4	103

#	Article	IF	CITATIONS
19	Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behavioural Brain Research, 2003, 140, 107-118.	2.2	96
20	Nucleus reuniens of the thalamus contains head direction cells. ELife, 2014, 3, .	6.0	91
21	Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial-arm maze task Behavioral Neuroscience, 2005, 119, 1682-1686.	1.2	87
22	Spatial Memory Engram in the Mouse Retrosplenial Cortex. Current Biology, 2018, 28, 1975-1980.e6.	3.9	87
23	Evidence for spatially-responsive neurons in the rostral thalamus. Frontiers in Behavioral Neuroscience, 2015, 9, 256.	2.0	85
24	Do rats with retrosplenial cortex lesions lack direction?. European Journal of Neuroscience, 2008, 28, 2486-2498.	2.6	80
25	Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. Journal of Comparative Neurology, 2010, 518, 2334-2354.	1.6	80
26	How do mammillary body inputs contribute to anterior thalamic function?. Neuroscience and Biobehavioral Reviews, 2015, 54, 108-119.	6.1	80
27	Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behavioral Neuroscience, 2002, 116, 85-94.	1.2	80
28	Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediateâ€early gene imaging in rats. European Journal of Neuroscience, 2009, 30, 877-888.	2.6	73
29	Dismantling the Papez circuit for memory in rats. ELife, 2013, 2, e00736.	6.0	73
30	Projections from the hippocampal region to the mammillary bodies in macaque monkeys. European Journal of Neuroscience, 2005, 22, 2519-2530.	2.6	72
31	New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning and Memory, 2010, 17, 407-419.	1.3	72
32	A Critical Role for the Anterior Thalamus in Directing Attention to Task-Relevant Stimuli. Journal of Neuroscience, 2015, 35, 5480-5488.	3.6	70
33	Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience, 2004, 19, 3291-3304.	2.6	67
34	Hippocampus and neocortex: recognition and spatial memory. Current Opinion in Neurobiology, 2011, 21, 440-445.	4.2	67
35	Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat. Journal of Comparative Neurology, 2013, 521, 2966-2986.	1.6	66
36	Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: Evidence towards an interdependent subcorticalâ€cortical memory network. Hippocampus, 2009, 19, 1090-1102.	1.9	63

#	Article	IF	CITATIONS
37	Using Fos Imaging in the Rat to Reveal the Anatomical Extent of the Disruptive Effects of Fornix Lesions. Journal of Neuroscience, 2000, 20, 8144-8152.	3.6	61
38	Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey. Hippocampus, 2012, 22, 1883-1900.	1.9	58
39	Gudden's ventral tegmental nucleus is vital for memory: re-evaluating diencephalic inputs for amnesia. Brain, 2009, 132, 2372-2384.	7.6	55
40	Transient spatial deficit associated with bilateral lesions of the lateral mammillary nuclei. European Journal of Neuroscience, 2005, 21, 820-824.	2.6	49
41	Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: Implications for the neural basis of scene learning Behavioral Neuroscience, 2009, 123, 504-519.	1.2	48
42	Oscillatory Entrainment of Thalamic Neurons by Theta Rhythm in Freely Moving Rats. Journal of Neurophysiology, 2011, 105, 4-17.	1.8	48
43	The rat retrosplenial cortex is required when visual cues are used flexibly to determine location. Behavioural Brain Research, 2014, 263, 98-107.	2.2	47
44	A novel role for the rat retrosplenial cortex in cognitive control. Learning and Memory, 2014, 21, 90-97.	1.3	47
45	Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behavioural Brain Research, 2010, 208, 566-575.	2.2	46
46	Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: Implications for fornix function. Hippocampus, 2011, 21, 945-957.	1.9	44
47	Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition. Learning and Memory, 2014, 21, 171-179.	1.3	44
48	Distinct, parallel pathways link the medial mammillary bodies to the anterior thalamus in macaque monkeys. European Journal of Neuroscience, 2007, 26, 1575-1586.	2.6	43
49	Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. European Journal of Neuroscience, 2016, 43, 1044-1061.	2.6	42
50	Stable Encoding of Visual Cues in the Mouse Retrosplenial Cortex. Cerebral Cortex, 2020, 30, 4424-4437.	2.9	42
51	The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys. European Journal of Neuroscience, 2014, 39, 107-123.	2.6	41
52	The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience, 2017, 45, 1451-1464.	2.6	39
53	Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neuroscience and Biobehavioral Reviews, 2004, 28, 525-531.	6.1	38
54	Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia, 2007, 45, 2699-2711.	1.6	38

#	Article	IF	CITATIONS
55	The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. NeuroImage, 2016, 130, 35-47.	4.2	38
56	What does spatial alternation tell us about retrosplenial cortex function?. Frontiers in Behavioral Neuroscience, 2015, 9, 126.	2.0	37
57	Mammillothalamic Disconnection Alters Hippocampocortical Oscillatory Activity and Microstructure: Implications for Diencephalic Amnesia. Journal of Neuroscience, 2019, 39, 6696-6713.	3.6	36
58	Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus. Hippocampus, 2011, 21, 1-8.	1.9	35
59	Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells. ENeuro, 2018, 5, ENEURO.0383-17.2018.	1.9	33
60	Memory loss resulting from fornix and septal damage: Impaired supra-span recall but preserved recognition over a 24-hour delay Neuropsychology, 2008, 22, 658-668.	1.3	32
61	Fornical and nonfornical projections from the rat hippocampal formation to the anterior thalamic nuclei. Hippocampus, 2015, 25, 977-992.	1.9	32
62	The Frequency and Extent of Mammillary Body Atrophy Associated with Surgical Removal of a Colloid Cyst. American Journal of Neuroradiology, 2009, 30, 736-743.	2.4	29
63	Mammilliothalamic tract lesions disrupt tests of visuo-spatial memory Behavioral Neuroscience, 2014, 128, 494-503.	1.2	29
64	A role for the head-direction system in geometric learning. Behavioural Brain Research, 2011, 224, 201-206.	2.2	27
65	Striking reduction in neurons and glial cells in anterior thalamic nuclei of older patients with Down syndrome. Neurobiology of Aging, 2019, 75, 54-61.	3.1	27
66	Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition of performance of tests of allocentric spatial memory Behavioral Neuroscience, 2002, 116, 232-240.	1.2	26
67	The rat retrosplenial cortex as a link for frontal functions: A lesion analysis. Behavioural Brain Research, 2017, 335, 88-102.	2.2	24
68	Using Idiothetic Cues to Swim a Path With a Fixed Trajectory and Distance: Necessary Involvement of the Hippocampus, but Not the Retrosplenial Cortex Behavioral Neuroscience, 2003, 117, 1363-1377.	1.2	20
69	The importance of mammillary body efferents for recency memory: towards a better understanding of diencephalic amnesia. Brain Structure and Function, 2017, 222, 2143-2156.	2.3	20
70	The retrosplenial cortex and long-term spatial memory: from the cell to the network. Current Opinion in Behavioral Sciences, 2020, 32, 50-56.	3.9	20
71	Time to put the mammillothalamic pathway into context. Neuroscience and Biobehavioral Reviews, 2021, 121, 60-74.	6.1	20
72	Sensory preconditioning in rats with lesions of the anterior thalamic nuclei: evidence for intact nonspatial â€~relational' processing. Behavioural Brain Research, 2002, 133, 125-133.	2.2	19

#	Article	IF	CITATIONS
73	Lesions of the mammillothalamic tract impair the acquisition of spatial but not nonspatial contextual conditional discriminations. European Journal of Neuroscience, 2003, 18, 2413-2416.	2.6	19
74	The Mammillary Bodies: A Review of Causes of Injury in Infants and Children. American Journal of Neuroradiology, 2022, 43, 802-812.	2.4	18
75	Construction of complex memories via parallel distributed cortical–subcortical iterative integration. Trends in Neurosciences, 2022, 45, 550-562.	8.6	18
76	Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: An <scp>MRI</scp> â€diffusion study. Brain and Behavior, 2017, 7, e00604.	2.2	17
77	Why Isn't the Head Direction System Necessary for Direction? Lessons From the Lateral Mammillary Nuclei. Frontiers in Neural Circuits, 2019, 13, 60.	2.8	17
78	Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (<i>Macaca fascicularis</i>). Journal of Comparative Neurology, 2012, 520, 1128-1145.	1.6	16
79	Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience, 2016, 330, 39-49.	2.3	15
80	Signal Change in the Mammillary Bodies after Perinatal Asphyxia. American Journal of Neuroradiology, 2019, 40, 1829-1834.	2.4	14
81	Mammillary body injury in neonatal encephalopathy: a multicentre, retrospective study. Pediatric Research, 2022, 92, 174-179.	2.3	14
82	Calcium-binding protein immunoreactivity in Gudden's tegmental nuclei and the hippocampal formation: differential co-localization in neurons projecting to the mammillary bodies. Frontiers in Neuroanatomy, 2015, 9, 103.	1.7	13
83	When is the rat retrosplenial cortex required for stimulus integration?. Behavioral Neuroscience, 2018, 132, 366-377.	1.2	13
84	Lesions within the head direction system reduce retrosplenial c- fos expression but do not impair performance on a radial-arm maze task. Behavioural Brain Research, 2018, 338, 153-158.	2.2	12
85	Precommissural and postcommissural fornix microstructure in healthy aging and cognition. Brain and Neuroscience Advances, 2020, 4, 239821281989931.	3.4	12
86	The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve. Journal of Neurophysiology, 2014, 112, 2316-2331.	1.8	8
87	Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task. Wellcome Open Research, 2020, 5, 68.	1.8	5
88	Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances, 2018, 2, 239821281881123.	3.4	4
89	The Papez Circuit and Recognition Memory. Handbook of Behavioral Neuroscience, 2018, , 217-226.	0.7	4
90	Chapter 5.2 Using hippocampal amnesia to understand the neural basis of diencephalic amnesia. Handbook of Behavioral Neuroscience, 2008, , 503-632.	0.7	1

#	Article	IF	CITATIONS
91	Amyloid imaging and Alzheimer's disease: the unsolved cases. Brain, 2016, 139, 2342-2344.	7.6	1
92	Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system: A reply. Hippocampus, 2018, 28, 691-693.	1.9	1
93	Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task. Wellcome Open Research, 2020, 5, 68.	1.8	1
94	Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiology of Aging, 2022, 113, 39-54.	3.1	0