
Alessandro Jäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. Nanomaterials, 2022, 12, 377.	1.9	15
2	Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)- <i>b</i> -poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications. Polymer Chemistry, 2021, 12, 2868-2880.	1.9	5
3	pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. Journal of Controlled Release, 2021, 332, 529-538.	4.8	32
4	Development of an Acid-Labile Ketal Linked Amphiphilic Block Copolymer Nanoparticles for pH-Triggered Release of Paclitaxel. Polymers, 2021, 13, 1465.	2.0	5
5	Enhanced Antitumor Efficacy through an "AND gate―Reactive Oxygenâ€Speciesâ€Dependent pHâ€Responsiv Nanomedicine Approach. Advanced Healthcare Materials, 2021, 10, e2100304.	[,] 8.9	9
6	Microfluidic-assisted synthesis of uniform polymer-stabilized silver colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126438.	2.3	4
7	Cashew Gum (Anacardium occidentale) as a Potential Source for the Production of Tocopherol-Loaded Nanoparticles: Formulation, Release Profile and Cytotoxicity. Applied Sciences (Switzerland), 2021, 11, 8467.	1.3	5
8	Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. Journal of Materials Chemistry B, 2020, 8, 9980-9996.	2.9	3
9	Effects of cashew gum and nanoparticles on cooled stallion semen. Acta Veterinaria Scandinavica, 2020, 62, 31.	0.5	5
10	Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules, 2020, 21, 1437-1449.	2.6	29
11	Probing protein adsorption onto polymer-stabilized silver nanocolloids towards a better understanding on the evolution and consequences of biomolecular coronas. Materials Science and Engineering C, 2020, 111, 110850.	3.8	15
12	<p>Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6269-6285.	3.3	19
13	Development, Cytotoxicity and Eye Irritation Profile of a New Sunscreen Formulation Based on Benzophenone-3-poly(ε-caprolactone) Nanocapsules. Toxics, 2019, 7, 51.	1.6	20
14	Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers, 2019, 11, 1061.	2.0	45
15	Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir, 2019, 35, 8363-8372.	1.6	18
16	Poly(ethylene oxide monomethyl ether)- <i>block</i> -poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation. Biomacromolecules, 2018, 19, 2443-2458.	2.6	11
17	Structural changes on polymeric nanoparticles induced by hydrophobic drug entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 238-249.	2.3	13
18	One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polymer Chemistry, 2017, 8, 1999-2004.	1.9	27

Alessandro JÃøer

#	Article	IF	CITATIONS
19	Morphology and Kinetics of Aggregation of Silver Nanoparticles Induced with Regioregular Cationic Polythiophene. Langmuir, 2016, 32, 2-11.	1.6	8
20	Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale, 2016, 8, 6958-6963.	2.8	54
21	Biocompatible succinic acid-based polyesters for potential biomedical applications: fungal biofilm inhibition and mesenchymal stem cell growth. RSC Advances, 2015, 5, 85756-85766.	1.7	14
22	The role of ether-functionalized ionic liquids in the sol–gel process: Effects on the initial alkoxide hydrolysis steps. Journal of Colloid and Interface Science, 2015, 447, 77-84.	5.0	14
23	Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: Synthesis, characterization and self-assembly studies. Polymer, 2015, 59, 215-225.	1.8	13
24	Nanoparticles of the poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer for pH-triggered release of paclitaxel. Polymer Chemistry, 2015, 6, 4946-4954.	1.9	31
25	Supramolecular self-assembly of novel thermo-responsive double-hydrophilic and hydrophobic Y-shaped [MPEO-b-PEtOx-b-(PCL) ₂] terpolymers. RSC Advances, 2015, 5, 62844-62854.	1.7	6
26	Solid lipid nanoparticles for hydrophilic biotech drugs: Optimization and cell viability studies (Caco-2) Tj ETQq0 0	0 rgBT /O 2 :0	verlock 10 Tf
27	Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polymer Chemistry, 2014, 5, 3884-3893.	1.9	29
28	Understanding the Structural Parameters of Biocompatible Nanoparticles Dictating Protein Fouling. Langmuir, 2014, 30, 9770-9779.	1.6	25
29	Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1092-1102.	2.3	49
30	Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester. Journal of Controlled Release, 2013, 165, 153-161.	4.8	57
31	Amphiphilic Diblock Copolymer and Polycaprolactone Blends to Produce New Vesicular Nanocarriers. Journal of Biomedical Nanotechnology, 2012, 8, 272-279.	0.5	7
32	Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system. Soft Matter, 2012, 8, 9563.	1.2	35
33	Novel "soft―biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter, 2012, 8, 4343.	1.2	51
34	Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles. Nanoscale, 2012, 4, 4504.	2.8	27
35	Isotretinoin-Loaded Nanocapsules: Stability and Cutaneous Penetration by Tape Stripping in Human and Pig Skin. Journal of Biomedical Nanotechnology, 2012, 8, 258-271.	0.5	15
36	pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly[2-(diisopropylamino)ethyl) Tj ETQq0	0 0 rgBT 1.2	Overlock 10/ 77

cancer therapy. Soft Matter, 2011, 7, 9316.

#	Article	IF	CITATIONS
37	Polymeric nanocapsules ultra stable in complex biological media. Colloids and Surfaces B: Biointerfaces, 2011, 83, 376-381.	2.5	39
38	Lipid-core nanocapsules restrained the indomethacin ethyl ester hydrolysis in the gastrointestinal lumen and wall acting as mucoadhesive reservoirs. European Journal of Pharmaceutical Sciences, 2010, 39, 116-124.	1.9	48
39	Semisolid Formulation Containing a Nanoencapsulated Sunscreen: Effectiveness, <l>In Vitro</l> Photostability and Immune Response. Journal of Biomedical Nanotechnology, 2009, 5, 240-246.	0.5	52
40	Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. International Journal of Pharmaceutics, 2007, 338, 297-305.	2.6	73