
Sandra Hartl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry. Proceedings of the Combustion Institute, 2021, 38, 2551-2558.	3.9	21
2	Flame structure analysis of turbulent premixed/stratified flames with H2 addition considering differential diffusion and stretch effects. Proceedings of the Combustion Institute, 2021, 38, 2993-3001.	3.9	13
3	Characterization of multi-regime reaction zones in a piloted inhomogeneous jet flame with local extinction. Proceedings of the Combustion Institute, 2021, 38, 2571-2579.	3.9	5
4	Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements. Combustion and Flame, 2020, 219, 268-274.	5.2	26
5	Assessing the relative importance of flame regimes in Raman/Rayleigh line measurements of turbulent lifted flames. Proceedings of the Combustion Institute, 2019, 37, 2297-2305.	3.9	19
6	Assessing an experimental approach for chemical explosive mode and heat release rate using DNS data. Combustion and Flame, 2019, 209, 214-224.	5.2	11
7	Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics. Combustion and Flame, 2019, 210, 426-438.	5.2	43
8	Numerical and experimental investigation of the laminar burning velocity of biofuels at atmospheric and high-pressure conditions. Fuel, 2019, 247, 250-256.	6.4	11
9	Flame Structure Analysis and Flamelet/Progress Variable Modelling of DME/Air Flames with Different Degrees of Premixing. Flow, Turbulence and Combustion, 2019, 102, 757-773.	2.6	1
10	Regime identification from Raman/Rayleigh line measurements in partially premixed flames. Combustion and Flame, 2018, 189, 126-141.	5.2	41
11	Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach. International Journal of Chemical Kinetics, 2016, 48, 423-441.	1.6	77
12	LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combustion and Flame, 2015, 162, 3016-3029.	5.2	54
13	A Constrained Control Approach for the Automated Choice of an Optimal Progress Variable for Chemistry Tabulation. Flow, Turbulence and Combustion, 2015, 94, 593-617.	2.6	31
14	Flamelet/progress variable modeling of partial oxidation systems: From laboratory flames to pilot-scale reactors. Chemical Engineering Science, 2015, 134, 694-707.	3.8	18
15	Laminar burning velocity measurements using the Heat Flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures. Fuel, 2015, 140, 10-16.	6.4	47
16	Determination of laminar burning velocities for lean low calorific H2/N2 and H2/CO/N2 gas mixtures. International Journal of Hydrogen Energy, 2014, 39, 19810-19817.	7.1	28