List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606551/publications.pdf Version: 2024-02-01

KYUNC IN LEE

#	Article	IF	CITATIONS
1	Preparation of cathode slurry for lithium-ion battery by three-roll mill process. Carbon Letters, 2022, 32, 265-272.	3.3	8
2	Facile Fabrication of Anisotropic Multicompartmental Microfibers Using Charge Reversal Electrohydrodynamic Coâ€Jetting. Macromolecular Rapid Communications, 2022, 43, e2100560.	2.0	7
3	Improved Performance of Allâ€Solidâ€State Lithium Metal Batteries via Physical and Chemical Interfacial Control. Advanced Science, 2022, 9, e2103433.	5.6	12
4	Colloid Syringeless Electrospinning toward Nonwoven Nanofiber Web Containing a Massive Amount of Inorganic Fillers. Macromolecular Materials and Engineering, 2022, 307, .	1.7	8
5	Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Nanomaterials, 2022, 12, 1649.	1.9	10
6	Syringeless electrospinning of PVDF/SiO2 as separator membrane for high-performance lithium-ion batteries. Materials Chemistry and Physics, 2022, 288, 126354.	2.0	13
7	Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs. Polymer, 2021, 214, 123262.	1.8	2
8	Bio-specific immobilization of enzymes on electrospun PHB nanofibers. Enzyme and Microbial Technology, 2021, 145, 109749.	1.6	8
9	3D jet writing of mechanically actuated tandem scaffolds. Science Advances, 2021, 7, .	4.7	28
10	Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(<i>p</i> -xylylene) Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 43123-43133.	4.0	6
11	Post-crosslinkable thermoplastic polyurethane for control of mechanical properties after processes. Polymer, 2021, 236, 124350.	1.8	7
12	Novel silane-treated polyacrylonitrile as a promising negative electrode binder for LIBs. Journal of Alloys and Compounds, 2020, 815, 152481.	2.8	12
13	Prussian blue decorated hydrogel particles for effective removal of cesium ion from aqueous media. Polymer, 2020, 186, 122029.	1.8	4
14	Preparation of Poly-1-butene Nanofiber Mat and Its Application as Shutdown Layer of Next Generation Lithium Ion Battery. Polymers, 2020, 12, 2267.	2.0	8
15	Cheap, facile, and upscalable activated carbon-based photothermal layers for solar steam generation. RSC Advances, 2020, 10, 42432-42440.	1.7	17
16	Fabrication of Metallochromic Dye Functionalized Hydrogel for On-site, Fast, User-friendly Metal-ion Sensing Kit. Macromolecular Research, 2020, 28, 580-586.	1.0	4
17	Cooperative Switching in Largeâ€Area Assemblies of Magnetic Janus Particles. Advanced Functional Materials, 2020, 30, 1907865.	7.8	13
18	Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Applied Materials & Interfaces, 2020, 12, 11072-11083.	4.0	149

#	Article	IF	CITATIONS
19	Synthesis of Multiâ€Functionalized N–Cl Hydantoin Polyurethane for Chemical Warfare Agent Decomposition with High N–Cl Stability. Macromolecular Chemistry and Physics, 2019, 220, 1900213.	1.1	8
20	Preparation of non-woven nanofiber webs for detoxification of nerve gases. Polymer, 2019, 179, 121664.	1.8	7
21	Synthesis of poly[2-(3-butenyl)-2-oxazoline] with abundant carboxylic acid functional groups as a fiber-based sol–gel reaction supporter for catalytic applications. Journal of Industrial and Engineering Chemistry, 2019, 80, 112-121.	2.9	2
22	Analysis of deuterated water contents using FTIR bending motion. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 487-493.	0.7	34
23	A Convenient Dual-Side Anionic Initiator Based on 2,6-Luditine/s-Butyl Lithium. Macromolecular Research, 2019, 27, 601-605.	1.0	2
24	A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water. Journal of Hazardous Materials, 2019, 369, 416-422.	6.5	33
25	9. Needless and syringeless electrospinning for mass production. , 2019, , 217-238.		Ο
26	Solar-to-Steam Generation via Porous Black Membranes with Tailored Pore Structures. ACS Applied Materials & Interfaces, 2019, 11, 48300-48308.	4.0	21
27	Dye Clicked Thermoplastic Polyurethane as a Generic Platform toward Chromic-Polymer Applications. Scientific Reports, 2019, 9, 18648.	1.6	7
28	Massâ€Production of Electrospun Carbon Nanofiber Containing SiO _x for Lithiumâ€lon Batteries with Enhanced Capacity. Macromolecular Materials and Engineering, 2019, 304, 1800564.	1.7	15
29	Black Diatom Colloids toward Efficient Photothermal Converters for Solar-to-Steam Generation. ACS Applied Materials & Interfaces, 2019, 11, 4531-4540.	4.0	22
30	3D Jet Writing: Functional Microtissues Based on Tessellated Scaffold Architectures. Advanced Materials, 2018, 30, e1707196.	11.1	58
31	Fabrication of Homogeneous Metal-Organic Hybrid Composite from Copper Containing Methacrylate Copolymer Through Layer-by-Layer Film Processing and e-Beam Irradiation. Macromolecular Research, 2018, 26, 466-471.	1.0	2
32	Highly functionalized thermoplastic polyurethane from surface click reactions. Journal of Applied Polymer Science, 2018, 135, 46519.	1.3	14
33	N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents. Polymer, 2018, 138, 146-155.	1.8	40
34	Study on peculiar carbon pattern formation from polymer blend thin films under electric fields. Thin Solid Films, 2018, 660, 846-851.	0.8	3
35	Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. Journal of Industrial and Engineering Chemistry, 2018, 60, 465-474.	2.9	26
36	Mass Production of Functional Amine–Conjugated PAN Nanofiber Mat via Syringeless Electrospinning and CVD. Macromolecular Materials and Engineering, 2018, 303, 1700565.	1.7	12

#	Article	IF	CITATIONS
37	Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting. Advanced Science, 2018, 5, 1800024.	5.6	9
38	Novel flexible styrenic elastomer cation-exchange material based on phenyl functionalized polystyrene-butadiene copolymer. Journal of Industrial and Engineering Chemistry, 2017, 47, 128-140.	2.9	3
39	Syringeless Electrospinning toward Versatile Fabrication of Nanofiber Web. Scientific Reports, 2017, 7, 41424.	1.6	60
40	Zirconium Hydroxideâ€coated Nanofiber Mats for Nerve Agent Decontamination. Chemistry - an Asian Journal, 2017, 12, 698-705.	1.7	33
41	Synthesis of highly functionalized thermoplastic polyurethanes and their potential applications. Polymer, 2017, 116, 287-294.	1.8	55
42	Toward a detoxification fabric against nerve gas agents: guanidine-functionalized poly[2-(3-butenyl)-2-oxazoline]/Nylon-6,6 nanofibers. RSC Advances, 2017, 7, 15246-15254.	1.7	16
43	Simultaneous control of size and surface functionality of silica particle via growing method. Advanced Powder Technology, 2017, 28, 2914-2920.	2.0	16
44	Synthesis of Multifunctionalized Graftâ€Type Polyolefinâ€Based Elastomers with a High Utility Temperature. Macromolecular Chemistry and Physics, 2017, 218, 1700298.	1.1	2
45	Nanofiberâ€Based Hydrocolloid from Colloid Electrospinning Toward Next Generation Wound Dressing. Macromolecular Materials and Engineering, 2016, 301, 818-826.	1.7	34
46	Synthesis of chain-end multi-functionalized polyisoprene with a definite number of amino groups via living anionic copolymerization. Polymer, 2016, 101, 158-167.	1.8	5
47	Snailâ€ŀike Particles from Compartmentalized Microfibers. Macromolecular Rapid Communications, 2016, 37, 73-78.	2.0	6
48	Fabrication of silica nanotubes with an anisotropic functionality as a smart catalyst supporter. Chemical Communications, 2016, 52, 9825-9828.	2.2	7
49	Simultaneous Chemical and Optical Patterning of Polyacrylonitrile Film by Vapor-Based Reaction. Macromolecular Rapid Communications, 2015, 36, 1192-1199.	2.0	5
50	Enhancement of adhesion between inorganic nanoparticles and polymeric matrix in nanocomposite by introducing polymeric thin film onto nanoparticles. Polymer Engineering and Science, 2015, 55, 1906-1911.	1.5	11
51	Introduction of reversible crosslinker into artificial marbles toward chemical recyclability. Journal of Industrial and Engineering Chemistry, 2015, 31, 86-90.	2.9	8
52	Preparation of metal-ion containing polymers: Synthesis and characterization of methacryliccopolymers containing copper ion. Polymer, 2015, 77, 297-304.	1.8	5
53	Fabrication of One-Dimensional Organic Nanomaterials and Their Optoelectronic Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 1282-1302.	0.9	18
54	Spatioselective Growth of Metalâ€Organic Framework Nanocrystals on Compositionally Anisotropic Polymer Particles. Advanced Materials, 2014, 26, 2883-2888.	11,1	16

#	Article	IF	CITATIONS
55	Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants. Nanotechnology, 2013, 24, 255602.	1.3	1
56	Photoswitchable Particles for Onâ€Đemand Degradation and Triggered Release. Small, 2013, 9, 3051-3057.	5.2	16
57	Janus-Core and Shell Microfibers. Langmuir, 2013, 29, 6181-6186.	1.6	36
58	Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon. Journal of Hazardous Materials, 2013, 260, 82-88.	6.5	109
59	A Facile Route Towards Inorganic Particles with Two Distinct Compartments Based on Electroâ€Hydrodynamic Coâ€Jetting. Particle and Particle Systems Characterization, 2013, 30, 936-939.	1.2	3
60	Spontaneous shape reconfigurations in multicompartmental microcylinders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16057-16062.	3.3	90
61	Anisotropic Janus Catalysts for Spatially Controlled Chemical Reactions. Small, 2012, 8, 3116-3122.	5.2	46
62	Fluorescent boronic acid-modified polymer nanoparticles for enantioselective monosaccharide detection. Analytical Methods, 2012, 4, 913.	1.3	10
63	Multifunctional polymer particles with distinct compartments. Journal of Materials Chemistry, 2011, 21, 8502.	6.7	73
64	Fabrication of polymer nanotubes containing nanoparticles and inside functionalization. Chemical Communications, 2011, 47, 9447.	2.2	15
65	Recent advances with anisotropic particles. Current Opinion in Colloid and Interface Science, 2011, 16, 195-202.	3.4	222
66	Compartmentalized Photoreactions within Compositionally Anisotropic Janus Microstructures. Macromolecular Rapid Communications, 2011, 32, 431-437.	2.0	20
67	Macromol. Rapid Commun. 5/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0
68	Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon, 2010, 48, 4248-4255.	5.4	211
69	Preparation of a Catalytic Membrane Reactor with Palladium Nanoparticles Supported by a Packedâ€Bed Silica Nanosupporter for Gasâ€Phase Methanol Oxidation. Small, 2010, 6, 2378-2382.	5.2	8
70	Photoluminescent polymer nanoparticles for label-free cellular imaging. Chemical Communications, 2010, 46, 5229.	2.2	37
71	Mesoporous Nanofibers from Dual Structureâ€Đirecting Agents in AAO: Mesostructural Control and their Catalytic Applications. Chemistry - A European Journal, 2009, 15, 2491-2495.	1.7	26
72	Influence of amorphous polymer nanoparticles on the crystallization behavior of poly(vinyl alcohol) nanocomposites. Macromolecular Research, 2009, 17, 476-482.	1.0	15

#	Article	IF	CITATIONS
73	Pore Structure Analysis of Activated Carbon Fiber by Microdomain-Based Model. Langmuir, 2009, 25, 7631-7637.	1.6	72
74	Versatile strategies for fabricating polymer nanomaterials with controlled size and morphology. Macromolecular Research, 2008, 16, 85-102.	1.0	55
75	Vaporâ€Phase Synthesis of Mesostructured Silica Nanofibers Inside Porous Alumina Membranes. Small, 2008, 4, 1945-1949.	5.2	30
76	Effect of silica nanofillers on isothermal crystallization of poly(vinyl alcohol): In-situ ATR-FTIR study. Polymer Testing, 2008, 27, 360-367.	2.3	85
77	Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization. Chemical Communications, 2007, , 2689.	2.2	47
78	Carbon Nanofibers: A Novel Nanofiller for Nanofluid Applications. Small, 2007, 3, 1209-1213.	5.2	73
79	Fabrication of Photoluminescent Dyes/Poly(acrylonitrile) Coaxial Nanotubes Using Vapor Deposition Polymerization. Chemistry of Materials, 2006, 18, 5002-5008.	3.2	38
80	Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement. Chemical Communications, 2005, , 3847.	2.2	38
81	Polydipyrrole- and polydicarbazole-nanorods as new nanosized supports for DNA hybridization. Chemical Communications, 2005, , 4357.	2.2	15