

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606516/publications.pdf Version: 2024-02-01



ACE LITT

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inhibitors of Alphavirus Entry and Replication Identified with a Stable Chikungunya Replicon Cell Line<br>and Virus-Based Assays. PLoS ONE, 2011, 6, e28923.                                                                                       | 1.1 | 219       |
| 2  | ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for<br>initiation of virus replication. Proceedings of the National Academy of Sciences of the United States<br>of America, 2018, 115, E10457-E10466. | 3.3 | 99        |
| 3  | Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya<br>Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization. Journal of<br>Virology, 2015, 89, 11420-11437.              | 1.5 | 81        |
| 4  | RIC-I and MDA-5 Detection of Viral RNA-dependent RNA Polymerase Activity Restricts Positive-Strand<br>RNA Virus Replication. PLoS Pathogens, 2013, 9, e1003610.                                                                                    | 2.1 | 66        |
| 5  | Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of<br>Every Replicase Protein. PLoS ONE, 2016, 11, e0151616.                                                                                       | 1.1 | 64        |
| 6  | Mutations Conferring a Noncytotoxic Phenotype on Chikungunya Virus Replicons Compromise<br>Enzymatic Properties of Nonstructural Protein 2. Journal of Virology, 2015, 89, 3145-3162.                                                              | 1.5 | 52        |
| 7  | Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 9558-9567.                                                         | 3.3 | 50        |
| 8  | Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease's active site cysteine residue. Scientific Reports, 2016, 6, 37124.                                                           | 1.6 | 45        |
| 9  | Design and Validation of Novel Chikungunya Virus Protease Inhibitors. Antimicrobial Agents and<br>Chemotherapy, 2016, 60, 7382-7395.                                                                                                               | 1.4 | 40        |
| 10 | Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template. Journal of Virology, 2017, 91, .                                                                                                   | 1.5 | 34        |
| 11 | A Chikungunya Virus <i>trans</i> -Replicase System Reveals the Importance of Delayed Nonstructural<br>Polyprotein Processing for Efficient Replication Complex Formation in Mosquito Cells. Journal of<br>Virology, 2018, 92, .                    | 1.5 | 32        |
| 12 | Design and Use of Chikungunya Virus Replication Templates Utilizing Mammalian and Mosquito RNA<br>Polymerase I-Mediated Transcription. Journal of Virology, 2019, 93, .                                                                            | 1.5 | 24        |
| 13 | Mutating chikungunya virus nonâ€structural protein produces potent liveâ€attenuated vaccine<br>candidate. EMBO Molecular Medicine, 2019, 11, .                                                                                                     | 3.3 | 23        |
| 14 | Sensitivity of Alphaviruses to G3BP Deletion Correlates with Efficiency of Replicase Polyprotein<br>Processing. Journal of Virology, 2020, 94, .                                                                                                   | 1.5 | 20        |
| 15 | nsP4 Is a Major Determinant of Alphavirus Replicase Activity and Template Selectivity. Journal of<br>Virology, 2021, 95, e0035521.                                                                                                                 | 1.5 | 19        |
| 16 | Cross-utilisation of template RNAs by alphavirus replicases. PLoS Pathogens, 2020, 16, e1008825.                                                                                                                                                   | 2.1 | 18        |
| 17 | Interdomain Flexibility of Chikungunya Virus nsP2 Helicase-Protease Differentially Influences Viral RNA Replication and Infectivity. Journal of Virology, 2021, 95, .                                                                              | 1.5 | 18        |
| 18 | VCP/p97 Is a Proviral Host Factor for Replication of Chikungunya Virus and Other Alphaviruses.<br>Frontiers in Microbiology, 2019, 10, 2236.                                                                                                       | 1.5 | 14        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Decreased Virulence of Ross River Virus Harboring a Mutation in the First Cleavage Site of<br>Nonstructural Polyprotein Is Caused by a Novel Mechanism Leading to Increased Production of<br>Interferon-Inducing RNAs. MBio, 2018, 9, . | 1.8 | 13        |