Diego Cortés-Arriagada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606488/publications.pdf

Version: 2024-02-01

88 papers 1,793 citations

23 h-index

279701

330025 37 g-index

97 all docs

97 docs citations

97 times ranked 1885 citing authors

#	Article	IF	CITATIONS
1	Acetylsalicylic acid interaction with Boron nitride nanostructures – A density functional analysis. Journal of Molecular Liquids, 2022, 355, 118980.	2.3	21
2	Chiral 1D Metal–Organic Materials Based on Cu(II) and Amino Acid Schiff Bases. Crystal Growth and Design, 2022, 22, 237-250.	1.4	6
3	Tailoring the arsenic(III) removal ability from water using metal-organic frameworks via metal exchange – A computational study. Journal of Molecular Liquids, 2022, 358, 119167.	2.3	1
4	A first-principles study on the adsorption properties of phosphorene oxide for pollutant removal from water. Journal of Molecular Liquids, 2022, 357, 119103.	2.3	2
5	Photophysical characteristics of Phenylimidazo(4,5-f)1,10-phenanthroline Rhenium(I) complexes - A theoretical approach to their potential applications in lighting devices. Materials Science in Semiconductor Processing, 2022, 147, 106733.	1.9	O
6	Dependence between luminescence properties of Cu(<scp>i</scp>) complexes and electronic/structural parameters derived from steric effects. New Journal of Chemistry, 2022, 46, 10584-10593.	1.4	2
7	A new Cull-dinuclear paddlewheel complex. Structural and electronic properties. Journal of Molecular Structure, 2021, 1224, 129172.	1.8	5
8	Elucidating the co-transport of bisphenol A with polyethylene terephthalate (PET) nanoplastics: A theoretical study of the adsorption mechanism. Environmental Pollution, 2021, 270, 116192.	3.7	37
9	In silico study of the adsorption of acetamiprid on functionalized carbon nanocones. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114516.	1.3	11
10	Neutral and cationic methallyl nickel complexes in alkene activation: a combined DFT, ESI-MS and chemometric approach. Catalysis Science and Technology, 2021, 11, 7475-7485.	2.1	1
11	Exploring the adsorption properties of doped phosphorene for the uptake of DNA nucleobases. Journal of Molecular Liquids, 2021, 325, 115183.	2.3	6
12	Intermolecular driving forces on the adsorption of DNA/RNA nucleobases to graphene and phosphorene: An atomistic perspective from DFT calculations. Journal of Molecular Liquids, 2021, 325, 115229.	2.3	17
13	2-Mercaptobenzothiazole modified carbon paste electrode as a novel copper sensor: An electrochemical and computational study. Journal of Electroanalytical Chemistry, 2021, 888, 115208.	1.9	13
14	Functionalized porphyrins from meso-poly-halogeno-alkyl-dipyrromethanes: synthesis and characterization. Comptes Rendus Chimie, 2021, 24, 27-45.	0.2	1
15	First-principles study of hybrid nanostructures formed by deposited phthalocyanine/porphyrin metal complexes on phosphorene. Journal of Molecular Liquids, 2021, 333, 115948.	2.3	9
16	Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2021, 398, 139263.	2.6	27
17	Fullerene–phosphorene–nanoflake nanostructures: Modulation of their interaction mechanisms and electronic properties through the size of carbon fullerenes. Carbon, 2021, 182, 354-365.	5.4	5
18	High stability and properties of adsorbed polycyclic aromatic hydrocarbons (PAHs) onto phosphorene: An atomistic DFT study. Journal of Molecular Liquids, 2021, 341, 117465.	2.3	4

#	Article	IF	Citations
19	Effective removal of water-soluble methylated arsenic contaminants with phosphorene oxide nanoflakes: A DFT study. Journal of Molecular Liquids, 2021, 341, 117423.	2.3	3
20	Removal of water-soluble inorganic arsenicals with phosphorene oxide nanoadsorbents: A first-principles study. Chemical Engineering Journal, 2021, 426, 131471.	6.6	4
21	Quantum molecular study on doping effect in titanium and vanadium clusters: their application to remove some chemical species. Applied Nanoscience (Switzerland), 2020, 10, 37-49.	1.6	13
22	Importance of the interaction adsorbent –adsorbate in the dyes adsorption process and DFT modeling. Journal of Molecular Structure, 2020, 1203, 127398.	1.8	25
23	Mechanistic study of the competitiveness between branched and linear polyethylene production on $\langle i \rangle N \langle i \rangle$ -arylcyano- \hat{I}^2 -diketiminate nickel hydride. Polymer Chemistry, 2020, 11, 6640-6649.	1.9	4
24	Effect on the aromaticity of heterocyclic ligands by coordination with ruthenium electronâ€withdrawing metal centers. International Journal of Quantum Chemistry, 2020, 120, e26412.	1.0	O
25	Data of interaction of supported ionic liquids phases onto copper nanoparticles: A density functional theory study. Data in Brief, 2020, 33, 106562.	0.5	1
26	A first-principles description of the stability of transition-metal doped phosphorene nanosheets. Surfaces and Interfaces, 2020, 21, 100786.	1.5	5
27	Uptake of formaldehyde onto doped phosphorene nanosheets: A cluster DFT study of single and co-adsorption states. Journal of Alloys and Compounds, 2020, 831, 154885.	2.8	26
28	Studies on the solvatochromic effect and NLO response in new symmetric bimetallic Rhenium compounds. Polyhedron, 2020, 187, 114679.	1.0	5
29	Synthesis and photophysical characterization of novel Ir(III) complexes with a dipyridophenazine analogue (ppdh) as ancillary ligand. Polyhedron, 2020, 186, 114621.	1.0	7
30	Removal of arsenic from water using iron-doped phosphorene nanoadsorbents: A theoretical DFT study with solvent effects. Journal of Molecular Liquids, 2020, 307, 112958.	2.3	23
31	Exploring the Nature of Interaction and Stability between Water-Soluble Arsenic Pollutants and Metal–Phosphorene Hybrids: A Density Functional Theory Study. Journal of Physical Chemistry A, 2020, 124, 3662-3671.	1.1	9
32	Interaction of supported ionic liquids phases onto copper nanoparticles: A DFT study. Journal of Molecular Liquids, 2020, 310, 113089.	2.3	11
33	Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles. Nanoscale Advances, 2020, 2, 1325-1332.	2.2	4
34	Molecular conductance versus inductive effects of axial ligands on the electrocatalytic activity of self-assembled iron phthalocyanines: The oxygen reduction reaction. Electrochimica Acta, 2019, 327, 134996.	2.6	14
35	Impact of precipitate characteristics and precipitation conditions on the settling performance of a sulfide precipitation process: An exhaustive characterization of the aggregation behavior. Hydrometallurgy, 2019, 189, 105150.	1.8	13
36	Performance of doped graphene nanoadsorbents with first-row transition metals (Sc Zn) for the adsorption of water-soluble trivalent arsenicals: A DFT study. Journal of Molecular Liquids, 2019, 294, 111665.	2.3	8

#	Article	IF	Citations
37	Interaction of H2O with (CuS)n, (Cu2S)n, and (ZnS)n small clusters (n = 1–4, 6): relation to the aggregation characteristics of metal sulfides at aqueous solutions. Journal of Molecular Modeling, 2019, 25, 291.	0.8	11
38	Chemical and Physical Viewpoints About the Bonding in Fullerene–Graphene Hybrid Materials: Interaction on Pristine and Fe-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 24209-24219.	1.5	13
39	Interaction of trivalent arsenic on different topologies of Fe-doped graphene nanosheets at water environments: A computational study. Journal of Molecular Liquids, 2019, 289, 111137.	2.3	16
40	Computational quest of adsorbents based on doped graphene nanosheets for phosgene uptake, and analysis of the co-adsorption phenomena. Synthetic Metals, 2019, 252, 142-150.	2.1	24
41	Effect of Chemical Order in the Structural Stability and Physicochemical Properties of B12N12 Fullerenes. Scientific Reports, 2019, 9, 16521.	1.6	39
42	Fullerene-like boron nitride cages BxNy (x + y = 28): stabilities and electronic properties from de functional theory computation. Journal of Molecular Modeling, 2019, 25, 21.	ensity 0.8	14
43	Substituent effects on the photophysical properties of amino-aurone-derivatives. Molecular Physics, 2019, 117, 1451-1458.	0.8	6
44	Enhancement of caffeine adsorption on boron nitride fullerene by silicon doping. Applied Nanoscience (Switzerland), 2019, 9, 317-326.	1.6	15
45	Interactions of B12N12 fullerenes on graphene and boron nitride nanosheets: A DFT study. Journal of Molecular Graphics and Modelling, 2019, 86, 27-34.	1.3	62
46	Phosphorene as a Template Material for Physisorption of DNA/RNA Nucleobases and Resembling of Base Pairs: A Cluster DFT Study and Comparisons with Graphene. Journal of Physical Chemistry C, 2018, 122, 4870-4880.	1.5	55
47	Reaction Electronic Flux Perspective on the Mechanism of the Zimmerman Di-Ï€-methane Rearrangement. Journal of Organic Chemistry, 2018, 83, 5969-5974.	1.7	11
48	Influence of the anion nature and alkyl substituents in the behavior of ionic liquids derived from phenylpyridines. Journal of Molecular Structure, 2018, 1154, 382-391.	1.8	8
49	Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and) Tj ETQq1	1 _{3.1} 78431	.4 rgBT /Ove 180
50	B(C6F5)3 Promotes the catalytic activation of [N,S]-ferrocenyl nickel complexes in ethylene oligomerization. Applied Catalysis A: General, 2018, 550, 228-235.	2.2	8
51	Molecular hydrogen formation in the interstellar medium: the role of polycyclic aromatic hydrocarbons analysed by the reaction force and activation strain model. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3052-3062.	1.6	13
52	Insights into the luminescent properties of anionic cyclometalated iridium(III) complexes with ligands derived from natural products. International Journal of Quantum Chemistry, 2018, 118, e25664.	1.0	6
53	Building Pyridinium Molecular Wires as Axial Ligands for Tuning the Electrocatalytic Activity of Iron Phthalocyanines for the Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 8406-8419.	5.5	57
54	Effects on the aromatic character of DNA/RNA nucleobases due to its adsorption onto graphene. International Journal of Quantum Chemistry, 2018, 118, e25699.	1.0	6

#	Article	IF	Citations
55	Mechanistic details of ethylene polymerization reaction using methallyl nickel(<scp>ii</scp>) catalysts. Physical Chemistry Chemical Physics, 2018, 20, 22915-22925.	1.3	5
56	Heteroleptic Cu(<scp>i</scp>) complexes bearing methoxycarbonyl-imidoylindazole and POP ligands – an experimental and theoretical study of their photophysical properties. New Journal of Chemistry, 2018, 42, 12576-12586.	1.4	12
57	Adsorption of polycyclic aromatic hydrocarbons onto graphyne: Comparisons with graphene. International Journal of Quantum Chemistry, 2017, 117, e25346.	1.0	23
58	Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 4179-4189.	1.3	46
59	Why Low Valent Lead(II) Hydride Complex Would be a Better Catalyst for CO ₂ Activation than Its 14 Group Analogues?. Journal of Physical Chemistry C, 2017, 121, 12127-12135.	1.5	9
60	A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption. Applied Surface Science, 2017, 420, 446-455.	3.1	65
61	The Role of Coâ€Activation and Ligand Functionalization in Neutral Methallyl Nickel(II) Catalysts for Ethylene Oligomerization and Polymerization. Chemistry - A European Journal, 2017, 23, 10167-10176.	1.7	13
62	Oxidized and Si-doped graphene: emerging adsorbents for removal of dioxane. Physical Chemistry Chemical Physics, 2017, 19, 17587-17597.	1.3	18
63	In silico characterization of nitric oxide adsorption on a magnetic [B 24 N 36 fullerene/(TiO 2) 2] â°' nanocomposite. Applied Surface Science, 2017, 400, 283-292.	3.1	32
64	Nonlinear optical response of octupolar Zn(II) complexes incorporating highly aromatic polypyridinic ligands: Insights into the role of the metal center. Synthetic Metals, 2017, 234, 9-17.	2.1	9
65	Tailoring electroactive surfaces by non-template molecular assembly. Towards electrooxidation of L-cysteine. Electrochimica Acta, 2017, 254, 201-213.	2.6	2
66	Supramolecular Reversible On–Off Switch for Singlet Oxygen Using Cucurbit[<i>n</i>)uril Inclusion Complexes. Journal of Physical Chemistry C, 2017, 121, 21782-21789.	1.5	29
67	Theoretical analysis of C–F bond cleavage mediated by cob[I]alamin-based structures. Journal of Molecular Modeling, 2017, 23, 264.	0.8	6
68	Fluorescence properties of aurone derivatives: an experimental and theoretical study with some preliminary biological applications. Photochemical and Photobiological Sciences, 2017, 16, 1268-1276.	1.6	18
69	New cyclometalated Ir(iii) complexes with bulky ligands with potential applications in LEC devices: experimental and theoretical studies of their photophysical properties. New Journal of Chemistry, 2016, 40, 6253-6263.	1.4	13
70	Expanding the environmental applications of metal (Al, Ti, Mn, Fe) doped graphene: adsorption and removal of 1,4-dioxane. Physical Chemistry Chemical Physics, 2016, 18, 32281-32292.	1.3	23
71	Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Applied Surface Science, 2016, 386, 84-95.	3.1	58
72	Insights into the use of Au19Cu and Au19Pd clusters for adsorption of trivalent arsenic. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	11

#	Article	IF	CITATIONS
73	A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene. RSC Advances, 2016, 6, 28500-28511.	1.7	19
74	Synthesis of new phosphorescent imidoyl-indazol and phosphine mixed ligand Cu(<scp>i</scp>) complexes – structural characterization and photophysical properties. RSC Advances, 2016, 6, 5141-5153.	1.7	24
75	The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO 2 anatase [1 0 1] surface. Journal of Colloid and Interface Science, 2016, 462, 252-259.	5.0	111
76	About the electronic and photophysical properties of iridium(<scp>iii</scp>)-pyrazino[2,3-f][1,10]-phenanthroline based complexes for use in electroluminescent devices. Physical Chemistry Chemical Physics, 2016, 18, 726-734.	1.3	20
77	A Family of Ir ^{III} Complexes with High Nonlinear Optical Response and Their Potential Use in Lightâ€Emitting Devices. European Journal of Inorganic Chemistry, 2015, 2015, 4946-4955.	1.0	19
78	Binding of Trivalent Arsenic onto the Tetrahedral Au ₂₀ and Au ₁₉ Pt Clusters: Implications in Adsorption and Sensing. Journal of Physical Chemistry A, 2015, 119, 6909-6918.	1.1	26
79	A comparative study of Ir(<scp>iii</scp>) complexes with pyrazino[2,3- <i>f</i>][1,10]phenanthroline and pyrazino[2,3- <i>f</i>][4,7]phenanthroline ligands in light-emitting electrochemical cells (LECs). Dalton Transactions, 2015, 44, 14771-14781.	1.6	39
80	Improving As(<scp>iii</scp>) adsorption on graphene based surfaces: impact of chemical doping. Physical Chemistry Chemical Physics, 2015, 17, 12056-12064.	1.3	49
81	Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study. Structural Chemistry, 2014, 25, 1045-1056.	1.0	12
82	The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux. Journal of Chemical Physics, 2014, 141, 134701.	1.2	27
83	Modeling the physisorption of bisphenol A on graphene and graphene oxide. Journal of Molecular Modeling, 2013, 19, 3569-3580.	0.8	47
84	Electron Transport Properties through Graphene Oxide–Cobalt Phthalocyanine Complexes. Journal of Physical Chemistry C, 2013, 117, 23664-23675.	1.5	22
85	Global and local reactivity indexes applied to understand the chemistry of graphene oxide and doped graphene. Journal of Molecular Modeling, 2013, 19, 919-930.	0.8	22
86	Removal of 4â€chlorophenol using graphene, graphene oxide, and aâ€doped graphene (A = N, B): A computational study. International Journal of Quantum Chemistry, 2013, 113, 1931-1939.	1.0	33
87	Electrical Characteristics of Cobalt Phthalocyanine Complexes Adsorbed on Graphene. Journal of Physical Chemistry C, 2011, 115, 16052-16062.	1.5	38
88	A through-space charge transfer mechanism for explaining the oxidation of 2-chlorophenol on a tetrasulphonated nickel(III) phthalocyanine. Computational and Theoretical Chemistry, 2011, 963, 161-167.	1.1	6