Edoardo Cremonese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606340/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
2	Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest Meteorology, 2011, 151, 1325-1337.	1.9	197
3	Phenopix: A R package for image-based vegetation phenology. Agricultural and Forest Meteorology, 2016, 220, 141-150.	1.9	136
4	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
5	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
6	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
7	Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 2015, 12, 5995-6015.	1.3	98
8	Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agricultural and Forest Meteorology, 2014, 198-199, 116-125.	1.9	75
9	Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190747.	1.8	71
10	NDVI derived from near-infrared-enabled digital cameras: Applicability across different plant functional types. Agricultural and Forest Meteorology, 2018, 249, 275-285.	1.9	68
11	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
12	Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sensing, 2018, 10, 1293.	1.8	64
13	Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. Cryosphere, 2019, 13, 1147-1165.	1.5	62
14	Heat wave hinders green wave: The impact of climate extreme on the phenology of a mountain grassland. Agricultural and Forest Meteorology, 2017, 247, 320-330.	1.9	61
15	Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. International Agrophysics, 2018, 32, 439-455.	0.7	55
16	Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Global Change Biology, 2015, 21, 363-376.	4.2	52
17	The tempo of greening in the European Alps: Spatial variations on a common theme. Global Change Biology, 2021, 27, 5614-5628.	4.2	44
18	Climatic Drivers of Greening Trends in the Alps. Remote Sensing, 2019, 11, 2527.	1.8	41

#	Article	IF	CITATIONS
19	Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere, 2015, 9, 647-661.	1.5	38
20	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	1.8	35
21	Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol. International Journal of Biometeorology, 2015, 59, 1927-1937.	1.3	31
22	Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Global Change Biology, 2020, 26, 4379-4400.	4.2	27
23	Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments. Hydrology and Earth System Sciences, 2020, 24, 4061-4090.	1.9	27
24	Remote estimation of grassland gross primary production during extreme meteorological seasons. International Journal of Applied Earth Observation and Geoinformation, 2014, 29, 1-10.	1.4	26
25	â€~Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. International Journal of Biometeorology, 2017, 61, 349-361.	1.3	26
26	Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Global Change Biology, 2022, 28, 2111-2123.	4.2	23
27	Hummocks affect soil properties and soil-vegetation relationships in a subalpine grassland (North-Western Italian Alps). Catena, 2016, 145, 214-226.	2.2	21
28	Learning about precipitation lapse rates from snow course data improves water balance modeling. Hydrology and Earth System Sciences, 2021, 25, 2109-2131.	1.9	19
29	Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors, 2017, 17, 2664.	2.1	18
30	Tradeâ€offs between global warming and day length on the start of the carbon uptake period in seasonally cold ecosystems. Geophysical Research Letters, 2013, 40, 6136-6142.	1.5	14
31	Assimilating phenology datasets automatically across ICOS ecosystem stations. International Agrophysics, 2018, 32, 677-687.	0.7	14
32	Contribution of advection to nighttime ecosystem respiration at a mountain grassland in complex terrain. Agricultural and Forest Meteorology, 2017, 237-238, 270-281.	1.9	12
33	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	1.3	12
34	An Enkf-Based Scheme for Snow Multivariable Data Assimilation at an Alpine Site. Journal of Hydrology and Hydromechanics, 2019, 67, 4-19.	0.7	11
35	Ecophysiological Responses to Rainfall Variability in Grassland and Forests Along a Latitudinal Gradient in Italy. Frontiers in Forests and Global Change, 2019, 2, .	1.0	9
36	Carbon, Water and Energy Fluxes of Terrestrial Ecosystems in Italy. Environmental Science and Engineering, 2015. , 11-45.	0.1	8

#	Article	lF	CITATIONS
37	Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environmental Research Letters, 2022, 17, 045015.	2.2	6
38	On the distribution and productivity of mountain grasslands in the Gran Paradiso National Park, NW Italy: A remote sensing approach. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102718.	1.4	6
39	Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt. Geoscientific Model Development, 2022, 15, 4853-4879.	1.3	6
40	Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes. Agricultural and Forest Meteorology, 2022, 323, 109060.	1.9	3