Whirang Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5606088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer, 2013, 54, 702-708.	3.8	73
2	Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability. Biomacromolecules, 2017, 18, 1908-1917.	5.4	39
3	Particle Size Distributions for Cellulose Nanocrystals Measured by Transmission Electron Microscopy: An Interlaboratory Comparison. Analytical Chemistry, 2020, 92, 13434-13442.	6.5	29
4	Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels. Physical Chemistry Chemical Physics, 2015, 17, 5115-5123.	2.8	26
5	High crystallinity of tunicate cellulose nanofibers for high-performance engineering films. Carbohydrate Polymers, 2021, 254, 117470.	10.2	22
6	Soft electronics on asymmetrical porous conducting membranes by molecular layer-by-layer assembly. Sensors and Actuators B: Chemical, 2018, 254, 916-925.	7.8	17
7	Targeted Binding of the M13 Bacteriophage to Thiamethoxam Organic Crystals. Langmuir, 2012, 28, 6013-6020.	3.5	16
8	Timed Electrodeposition of PEDOT:Nafion onto Carbon Fiber-Microelectrodes Enhances Dopamine Detection in Zebrafish Retina. Journal of the Electrochemical Society, 2020, 167, 115501.	2.9	15
9	Ecoâ€Degradable and Flexible Solidâ€State Ionic Conductors by Clayâ€Nanoconfined DMSO Composites. Advanced Sustainable Systems, 2020, 4, 1900134.	5.3	10
10	Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry. ACS Omega, 2021, 6, 6571-6581.	3.5	10
11	A facile method for the preferential alignment of mesochannels in silica films by solution flow. Microporous and Mesoporous Materials, 2010, 131, 136-140.	4.4	8
12	Mechanical enhancement of cellulose nanofibril (CNF) films through the addition of water-soluble polymers. Cellulose, 2021, 28, 6449.	4.9	8
13	Synthesis of porous silica with hierarchical structure directed by a silica precursor carrying a pore-generating cage. Journal of Materials Chemistry, 2008, 18, 4971.	6.7	7
14	Intumescent polydopamine coatings for fire protection. Green Materials, 2020, 8, 162-171.	2.1	7
15	Polymer Modified Carbon Fiber Microelectrodes for Precision Neurotransmitter Metabolite Measurements. Journal of the Electrochemical Society, 2020, 167, 167507.	2.9	6
16	Thermally induced mesophase development in ethanesilica filmsvia macromolecular templating approach. Macromolecular Research, 2009, 17, 697-702.	2.4	4
17	Controlling the Morphology of Organic Crystals with Filamentous Bacteriophages. ACS Applied Materials & Interfaces, 2015, 7, 15707-15715.	8.0	4
18	The Monitoring of Neurochemical Dynamics in Zebrafish Retina using Fast Scan Cyclic Voltammetry. FASEB Journal, 2020, 34, 1-1.	0.5	2

WHIRANG CHO

#	Article	IF	CITATIONS
19	High resolution voltammetric and field-effect transistor readout of carbon fiber microelectrode biosensors. Sensors & Diagnostics, 2022, 1, 460-464.	3.8	2
20	Tunable synthesis of hierarchical mesoporous silica via porogen-carrying organosilicates. Microporous and Mesoporous Materials, 2017, 239, 409-415.	4.4	1
21	Carbon Fiber Microelectrode pH Sensors with Voltammetry and Field Effect Transistors. ECS Meeting Abstracts, 2022, MA2022-01, 2229-2229.	0.0	0