Åukasz Skalniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605771/publications.pdf Version: 2024-02-01

ÅAIVASZ SVALNIAV

#	Article	IF	CITATIONS
1	Biphenyl Ether Analogs Containing Pomalidomide as Small-Molecule Inhibitors of the Programmed Cell Death-Ligand 1 Interaction. Molecules, 2022, 27, 3454.	1.7	5
2	Macrocyclic Peptide Inhibitor of PDâ€1/PDâ€L1 Immune Checkpoint. Advanced Therapeutics, 2021, 4, 2000195.	1.6	5
3	Human and mouse PD-L1: similar molecular structure, but different druggability profiles. IScience, 2021, 24, 101960.	1.9	45
4	Application of bioorthogonal hetero-Diels–Alder cycloaddition of 5-arylidene derivatives of 1,3-dimethylbarbituric acid and vinyl thioether for imaging inside living cells. Organic and Biomolecular Chemistry, 2021, 19, 6045-6058.	1.5	0
5	Germacranolides from Carpesium divaricatum: Some New Data on Cytotoxic and Anti-Inflammatory Activity. Molecules, 2021, 26, 4644.	1.7	4
6	Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 11614-11636.	2.9	42
7	PD-L1 Inhibitors: Different Classes, Activities, and Mechanisms of Action. International Journal of Molecular Sciences, 2021, 22, 11797.	1.8	18
8	Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy. Nanomaterials, 2021, 11, 2890.	1.9	9
9	Systematic â€~foldamerization' of peptide inhibiting p53-MDM2/X interactions by the incorporation of trans- or cis-2-aminocyclopentanecarboxylic acid residues. European Journal of Medicinal Chemistry, 2020, 208, 112814.	2.6	11
10	Does 2D correlation Raman spectroscopy distinguish polymer nanomaterials due to the nanoaddition?. Journal of Molecular Structure, 2020, 1217, 128342.	1.8	5
11	Di-bromo-Based Small-Molecule Inhibitors of the PD-1/PD-L1 Immune Checkpoint. Journal of Medicinal Chemistry, 2020, 63, 11271-11285.	2.9	45
12	Anti-CD44 DNA Aptamers Selectively Target Cancer Cells. Nucleic Acid Therapeutics, 2020, 30, 289-298.	2.0	13
13	A 2D-Raman correlation spectroscopy study of the interaction of the polymer nanocomposites with carbon nanotubes and human osteoblast-like cells interface. Journal of Molecular Structure, 2020, 1212, 128135.	1.8	8
14	Multicomponent Peptide Stapling as a Diversityâ€Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie, 2020, 132, 5273-5279.	1.6	6
15	Multicomponent Peptide Stapling as a Diversityâ€Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2020, 59, 5235-5241.	7.2	29
16	Resveratrol enhances apoptosis induced by the heterocyclic aromatic amines in p53-wt LoVo cells, but not in p53-deficient HaCaT cells. Acta Biochimica Polonica, 2020, 67, 605-611.	0.3	1
17	Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2019, 182, 111588.	2.6	9
18	CA-170 – A Potent Small-Molecule PD-L1 Inhibitor or Not?. Molecules, 2019, 24, 2804.	1.7	103

Åukasz Skalniak

#	Article	IF	CITATIONS
19	Design, Synthesis, Evaluation, and Structural Studies of <i>C</i> ₂ -Symmetric Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 7250-7263.	2.9	71
20	Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers, 2019, 11, 1014.	1.7	25
21	A fluorinated indoleâ€based <scp>MDM</scp> 2 antagonist selectively inhibits the growth of p53 ^{wt} osteosarcoma cells. FEBS Journal, 2019, 286, 1360-1374.	2.2	13
22	A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 151-170.	2.4	30
23	Raman microspectroscopic investigations of polymer nanocomposites: evaluation of physical and biophysical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 44-52.	1.8	13
24	ldentification of small-molecule inhibitors of USP2a. European Journal of Medicinal Chemistry, 2018, 150, 261-267.	2.6	24
25	p38 but not p53 is responsible for UVA-induced MCPIP1 expression. Mechanisms of Ageing and Development, 2018, 172, 96-106.	2.2	8
26	Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers, 2018, 10, 396.	1.7	49
27	1,4,5-Trisubstituted Imidazole-Based p53–MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers. Journal of Medicinal Chemistry, 2017, 60, 4234-4244.	2.9	29
28	Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. Journal of Medicinal Chemistry, 2017, 60, 5857-5867.	2.9	242
29	Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0 /G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chemical Biology, 2017, 24, 458-470.e18.	2.5	41
30	MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. Journal of Dermatological Science, 2017, 87, 10-18.	1.0	12
31	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€L1 Immune Checkpoint. Angewandte Chemie, 2017, 129, 13920-13923.	1.6	13
32	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€⊾1 Immune Checkpoint. Angewandte Chemie - International Edition, 2017, 56, 13732-13735.	7.2	131
33	Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8, 72167-72181.	0.8	221
34	MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB. Molecular and Cellular Biochemistry, 2014, 395, 253-263.	1.4	13
35	Proteasome inhibitor <scp>MG</scp> â€132 induces <scp>MCPIP</scp> 1 expression. FEBS Journal, 2013, 280, 2665-2674.	2.2	26
36	Effect of silver nanoparticles on human primary keratinocytes. Biological Chemistry, 2013, 394, 113-123.	1.2	46

Åukasz Skalniak

#	Article	IF	CITATIONS
37	Effects triggered by platinum nanoparticles on primary keratinocytes. International Journal of Nanomedicine, 2013, 8, 3963.	3.3	45
38	Metastases inhibition and cellular damage in melanoma cells irradiated with proton beam. Acta Ophthalmologica, 2013, 91, 0-0.	0.6	0
39	Limited GADD45α expression and function in IL-1β toxicity towards insulin-producing cells. Acta Biochimica Polonica, 2013, 60, 595-602.	0.3	1
40	Effects of the novel mitochondrial protein mimitin in insulin-secreting cells. Biochemical Journal, 2012, 445, 349-359.	1.7	11
41	Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1905-1913.	1.9	78
42	Regulatory feedback loop between NFâ€₽B and MCPâ€1â€induced protein 1 RNase. FEBS Journal, 2009, 276, 5892-5905.	2.2	91
43	Conserved Conformational Changes in the ATPase Cycle of Human Hsp90. Journal of Biological Chemistry, 2008, 283, 17757-17765.	1.6	120