Jo Van Damme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605500/publications.pdf

Version: 2024-02-01

IO VAN DAMME

#	Article	IF	CITATIONS
1	Efficacy of B Cell Depletion Therapy with Rituximab in Refractory Chronic Recurrent Uveitis Associated with Vogt-Koyanagi-Harada Disease. Ocular Immunology and Inflammation, 2022, 30, 750-757.	1.0	21
2	The turning away of serum amyloid A biological activities and receptor usage. Immunology, 2021, 163, 115-127.	2.0	16
3	Endogenous modification of the chemoattractant CXCL5 alters receptor usage and enhances its activity toward neutrophils and monocytes. Science Signaling, 2021, 14, .	1.6	8
4	From ELISA to Immunosorbent Tandem Mass Spectrometry Proteoform Analysis: The Example of CXCL8/Interleukin-8. Frontiers in Immunology, 2021, 12, 644725.	2.2	8
5	Interferons and other cytokines, genetics and beyond in COVID-19 and autoimmunity. Cytokine and Growth Factor Reviews, 2021, 58, 134-140.	3.2	5
6	The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers, 2021, 13, 4247.	1.7	8
7	The Chemokine-Based Peptide, CXCL9(74-103), Inhibits Angiogenesis by Blocking Heparan Sulfate Proteoglycan-Mediated Signaling of Multiple Endothelial Growth Factors. Cancers, 2021, 13, 5090.	1.7	12
8	New Perspectives on the Immunopathogenesis and Treatment of Uveitis Associated With Vogt-Koyanagi-Harada Disease. Frontiers in Medicine, 2021, 8, 705796.	1.2	17
9	Proteoform Analysis of Matrix Metalloproteinase-9/Gelatinase B and Discovery of Its Citrullination in Rheumatoid Arthritis Synovial Fluids. Frontiers in Immunology, 2021, 12, 763832.	2.2	7
10	Local Cytokine Expression Profiling in Patients with Specific Autoimmune Uveitic Entities. Ocular Immunology and Inflammation, 2020, 28, 453-462.	1.0	24
11	Soluble cytokine receptor levels in aqueous humour of patients with specific autoimmune uveitic entities: sCD30 is a biomarker of granulomatous uveitis. Eye, 2020, 34, 1614-1623.	1.1	8
12	Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators of Inflammation, 2020, 2020, 1-17.	1.4	3
13	Serum Amyloid A1 (SAA1) Revisited: Restricted Leukocyte-Activating Properties of Homogeneous SAA1. Frontiers in Immunology, 2020, 11, 843.	2.2	31
14	Induction of Chemokines by Hepatitis C Virus Proteins: Synergy of the Core Protein with Interleukin-1β and Interferon-γ in Liver Bystander Cells. Journal of Interferon and Cytokine Research, 2020, 40, 195-206.	0.5	5
15	Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm. Trends in Immunology, 2020, 41, 367-378.	2.9	28
16	Evaluation of Proteoforms of the Transmembrane Chemokines CXCL16 and CX3CL1, Their Receptors, and Their Processing Metalloproteinases ADAM10 and ADAM17 in Proliferative Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 601639.	2.2	25
17	The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunology Letters, 2019, 205, 1-8.	1.1	11
18	Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine and Growth Factor Reviews, 2019, 50, 29-42.	3.2	20

JO VAN DAMME

#	Article	IF	CITATIONS
19	Expression of interleukin (<scp>IL</scp>)â€10 family cytokines in aqueous humour of patients with specific endogenous uveitic entities: elevated levels of <scp>IL</scp> â€19 in human leucocyte antigenâ€B27â€associated uveitis. Acta Ophthalmologica, 2019, 97, e780-e784.	0.6	16
20	The Proinflammatory and Proangiogenic Macrophage Migration Inhibitory Factor Is a Potential Regulator in Proliferative Diabetic Retinopathy. Frontiers in Immunology, 2019, 10, 2752.	2.2	50
21	The <scp>CC</scp> chemokines <scp>CCL</scp> 8, <scp>CCL</scp> 13 and <scp>CCL</scp> 20 are local inflammatory biomarkers of <scp>HLA</scp> â€B27â€associated uveitis. Acta Ophthalmologica, 2019, 97, e122-e128.	0.6	22
22	Immunomodulation as Rescue for Chronic Atonic Skin Wounds. Trends in Immunology, 2018, 39, 341-354.	2.9	33
23	Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cellular and Molecular Immunology, 2018, 15, 312-323.	4.8	27
24	Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 2018, 9, 1930.	2.2	266
25	Gelatinase B/matrix metalloproteinase-9 is a phase-specific effector molecule, independent from Fas, in experimental autoimmune encephalomyelitis. PLoS ONE, 2018, 13, e0197944.	1.1	11
26	Matrix Metalloproteinase-9-Generated COOH-, but Not NH2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Frontiers in Immunology, 2018, 9, 1081.	2.2	15
27	Differential CXC and CX3C Chemokine Expression Profiles in Aqueous Humor of Patients With Specific Endogenous Uveitic Entities. , 2018, 59, 2222.		40
28	COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood, 2018, 131, 439-449.	0.6	17
29	Recombinant Parvoviruses Armed to Deliver CXCL4L1 and CXCL10 Are Impaired in Their Antiangiogenic and Antitumoral Effects in a Kaposi Sarcoma Tumor Model Due To the Chemokines' Interference with the Virus Cycle. Human Gene Therapy, 2017, 28, 295-306.	1.4	8
30	Inhibition of gelatinase B/MMP-9 does not attenuate colitis in murine models of inflammatory bowel disease. Nature Communications, 2017, 8, 15384.	5.8	40
31	Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes. Biochemical Pharmacology, 2017, 132, 92-101.	2.0	42
32	Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochemical Pharmacology, 2017, 145, 123-131.	2.0	4
33	Chemokine isoforms and processing in inflammation and immunity. Journal of Autoimmunity, 2017, 85, 45-57.	3.0	67
34	Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. International Journal of Molecular Sciences, 2017, 18, 1513.	1.8	28
35	Neutrophils from Patients with Primary Ciliary Dyskinesia Display Reduced Chemotaxis to CXCR2 Ligands. Frontiers in Immunology, 2017, 8, 1126.	2.2	12
36	Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Current Medicinal Chemistry, 2016, 23, 1725-1755.	1.2	180

Jo Van Damme

#	Article	IF	CITATIONS
37	The Cytokine Interleukin-6 and the Chemokines CCL20 and CXCL13 Are Novel Biomarkers of Specific Endogenous Uveitic Entities. , 2016, 57, 4606.		36
38	Regulation of Chemokine Activity – A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Frontiers in Immunology, 2016, 7, 483.	2.2	74
39	Microbiomic and Posttranslational Modifications as Preludes to Autoimmune Diseases. Trends in Molecular Medicine, 2016, 22, 746-757.	3.5	52
40	The cytokine-serum amyloid A-chemokine network. Cytokine and Growth Factor Reviews, 2016, 30, 55-69.	3.2	99
41	Development by Genetic Immunization of Monovalent Antibodies (Nanobodies) Behaving as Antagonists of the Human ChemR23 Receptor. Journal of Immunology, 2016, 196, 2893-2901.	0.4	48
42	CD26/dipeptidylpeptidase IV—chemokine interactions: double-edged regulation of inflammation and tumor biology. Journal of Leukocyte Biology, 2016, 99, 955-969.	1.5	75
43	Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochemical Pharmacology, 2016, 100, 73-85.	2.0	29
44	Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity <i>in vitro</i> and abrogates intra-articular lymphocyte recruitment <i>in vivo</i> . Oncotarget, 2016, 7, 62439-62459.	0.8	32
45	The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74–103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice. Journal of Biological Chemistry, 2015, 290, 21292-21304.	1.6	54
46	Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT). Experimental Eye Research, 2015, 132, 179-189.	1.2	76
47	The Chemokine Platelet Factor-4 Variant (PF-4var)/CXCL4L1 Inhibits Diabetes-Induced Blood–Retinal Barrier Breakdown. , 2015, 56, 1956.		14
48	Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochemical Journal, 2015, 465, 259-270.	1.7	39
49	Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. Journal of Leukocyte Biology, 2015, 98, 1049-1060.	1.5	40
50	CXCR3 ligands in disease and therapy. Cytokine and Growth Factor Reviews, 2015, 26, 311-327.	3.2	239
51	On the Structure and functions of gelatinase B/Matrix metalloproteinase-9 in neuroinflammation. Progress in Brain Research, 2014, 214, 193-206.	0.9	54
52	Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology, 2014, 219, 218-229.	0.8	63
53	Interference with Glycosaminoglycan-Chemokine Interactions with a Probe to Alter Leukocyte Recruitment and Inflammation In Vivo. PLoS ONE, 2014, 9, e104107.	1.1	15
54	Angiostatic, tumor inflammatory and anti-tumor effects of CXCL447-70 and CXCL4L147–70 in an EGF-dependent breast cancer model. Oncotarget, 2014, 5, 10916-10933.	0.8	23

Jo Van Damme

#	Article	IF	CITATIONS
55	Chemokine–protease interactions in cancer. Seminars in Cancer Biology, 2004, 14, 201-208.	4.3	65
56	Corrigendum to: Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion (FEBS 25376). FEBS Letters, 2002, 512, 353-353.	1.3	0
57	Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Letters, 2001, 507, 327-330.	1.3	102
58	Gene Cloning of a New Plasma CC Chemokine, Activating and Attracting Myeloid Cells in Synergy with Other Chemoattractantsâ€,‡. Biochemistry, 2001, 40, 11715-11722.	1.2	15
59	Diverging binding capacities of natural LD78Î ² isoforms of macrophage inflammatory protein-1α to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. European Journal of Immunology, 2001, 31, 2170-2178.	1.6	91
60	Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78Î ² into a most efficient monocyte attractant and CCR1 agonist. Blood, 2000, 96, 1674-1680.	0.6	151
61	Isolation of the CXC chemokines ENA-78, GROα and GROÎ ³ from tumor cells and leukocytes reveals NH2-terminal heterogeneity. FEBS Journal, 1999, 260, 421-429.	0.2	75
62	Differential induction of monocyte chemotactic protein-3 in mononuclear leukocytes and fibroblasts by interferon-α / β and interferon-γ reveals MCP-3 heterogeneity. European Journal of Immunology, 199 678-685.	991 2 9,	63
63	Transcriptional control of the human MCP-2 gene promoter by IFN-γ and IL-1β in connective tissue cells. Journal of Leukocyte Biology, 1999, 66, 502-511.	1.5	15
64	Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. FEBS Journal, 1998, 255, 67-73.	0.2	133
65	Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. European Journal of Immunology, 1998, 28, 1262-1271.	1.6	130
66	Regulation of gelatinase B (MMP-9) in leukocytes by plant lectins. FEBS Letters, 1998, 427, 275-278.	1.3	22
67	Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-11±. FEBS Letters, 1998, 432, 73-76.	1.3	187
68	Functional Comparison of Two Human Monocyte Chemotactic Protein-2 Isoforms, Role of the Amino-Terminal Pyroglutamic Acid and Processing by CD26/Dipeptidyl Peptidase IVâ€. Biochemistry, 1998, 37, 12672-12680.	1.2	141
69	Synergistic induction of MCP-1 and -2 by IL- 1^2 and interferons in fibroblasts and epithelial cells. Journal of Leukocyte Biology, 1998, 63, 364-372.	1.5	73
70	Granulocyte chemotactic protein-2 and related CXC chemokines: from gene regulation to receptor usage. Journal of Leukocyte Biology, 1997, 62, 563-569.	1.5	98
71	Production and Characterization of Recombinant Active Mouse Gelatinase B from Eukaryotic Cells and in vivo Effects after Intravenous Administration. FEBS Journal, 1997, 244, 21-30.	0.2	40
72	Cloning, Bacterial Expression and Biological Characterization of Recombinant Human Granulocyte Chemotactic Protein-2 and Differential Expression of Granulocyte Chemotactic Protein-2 and Epithelial Cell-Derived Neutrophil Activating Peptide-78 mRNAs. FEBS Journal, 1997, 243, 762-769.	0.2	28

JO VAN DAMME

#	Article	IF	CITATIONS
73	Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. Journal of Leukocyte Biology, 1996, 59, 67-74.	1.5	211
74	Essential role for natural killer cells in the lethal lipopolysaccharide-induced Shwartzman-like reaction in mice. European Journal of Immunology, 1994, 24, 1155-1160.	1.6	87
75	Differential regulation of gelatinase b and tissue-type plasminogen activator expression in human bowes melanoma cells. International Journal of Cancer, 1993, 53, 395-400.	2.3	29
76	Mouse gelatinase B. cDNA cloning, regulation of expression and glycosylation in WEHI-3 macrophages and gene organisation. FEBS Journal, 1993, 218, 129-141.	0.2	85
77	Human growth factor for murine interleukin (IL)-9 responsive T cell lines: co-induction with IL-6 in fibroblasts and identification as LIF/HILDA. European Journal of Immunology, 1992, 22, 2801-2808.	1.6	11
78	Natural human monocyte gelatinase and its inhibitor. FEBS Letters, 1991, 284, 73-78.	1.3	46
79	Interleukin 6, a possible autocrine growth and differentiation factor for the human megakaryocytic cell line, CMK. British Journal of Haematology, 1991, 77, 32-36.	1.2	34
80	Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. FEBS Journal, 1991, 198, 391-398.	0.2	237
81	Tumor necrosis factor-α and interleukin 6 synergistically induce T cell growth. European Journal of Immunology, 1990, 20, 1019-1025.	1.6	46
82	A bidirectional regulatory network involving IL 2 and IL 4 in the alternative CD2 pathway of T cell activation. European Journal of Immunology, 1990, 20, 1569-1575.	1.6	16
83	The neutrophil-activating proteins interleukin 8 and β-thromboglobulin:in vitro andin vivo comparison of NH2-terminally processed forms. European Journal of Immunology, 1990, 20, 2113-2118.	1.6	91
84	Purification of granulocyte chemotactic peptide/interleukin-8 reveals N-terminal sequence heterogeneity similar to that of beta-thromboglobulin. FEBS Journal, 1989, 181, 337-344.	0.2	94
85	Simultaneous production of interleukin 6, interferon-Î ² and colony-stimulating activity by fibroblasts after viral and bacterial infection. European Journal of Immunology, 1989, 19, 163-168.	1.6	91
86	The chemotactic activity for granulocytes produced by virally infected fibroblasts is identical to monocyte-derived interleukin 8. European Journal of Immunology, 1989, 19, 1189-1194.	1.6	136
87	Identification by sequence analysis of chemotactic factors for monocytes produced by normal and transformed cells stimulated with virus, double-stranded RNA or cytokine. European Journal of Immunology, 1989, 19, 2367-2373.	1.6	93
88	Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis and Rheumatism, 1988, 31, 784-788.	6.7	837
89	Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 l² and tumor necrosis factor-l±. European Journal of Immunology, 1988, 18, 1259-1264.	1.6	301
90	Effects of tumor necrosis factor on the interferon-Î ³ -induced major histocompatibility complex class II antigen expression by human endothelial cells. European Journal of Immunology, 1988, 18, 1469-1472.	1.6	108

#	Article	IF	CITATIONS
91	Heterogeneity of human tissue-type plasminogen activator. FEBS Letters, 1988, 238, 129-134.	1.3	6
92	Interleukin 1 and poly(rI) · poly(rC) induce production of a hybridoma growth factor by human fibroblasts. European Journal of Immunology, 1987, 17, 1-7.	1.6	181
93	Purification and characterization of human fibroblast-derived hybridoma growth factor identical to T-cell-derived B-cell stimulatory factor-2 (interleukin-6). FEBS Journal, 1987, 168, 543-550.	0.2	92