
Pablo J Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5605361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures. Journal of Chemical & Engineering Data, 2007, 52, 1468-1482.	1.0	183
2	Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 2018, 8, 7688-7697.	5.5	139
3	Ionic Liquids as Entrainers in Extractive Distillation:Â Isobaric Vaporâ^'Liquid Equilibria for Acetone + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate. Journal of Chemical & Engineering Data, 2007, 52, 141-147.	1.0	121
4	The Role of Reaction Temperature and Cracking Catalyst Characteristics in Determining the Relative Rates of Protolytic Cracking, Chain Propagation, and Hydrogen Transfer. Journal of Catalysis, 1994, 145, 171-180.	3.1	118
5	Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures. Journal of Chemical Thermodynamics, 2015, 90, 174-184.	1.0	77
6	Isobaric Vaporâ^'Liquid Equilibria for Ethyl Acetate + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 2007, 52, 2325-2330.	1.0	75
7	Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam. Applied Catalysis A: General, 2012, 417-418, 220-235.	2.2	75
8	Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphtha for production of propene and ethene. Applied Catalysis A: General, 2012, 421-422, 121-134.	2.2	75
9	Isobaric Vaporâ^'Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 2007, 52, 915-920.	1.0	73
10	Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K. Journal of Chemical & Engineering Data, 2010, 55, 1377-1388.	1.0	71
11	Using 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate as an Entrainer for the Extractive Distillation of Ethanol + Water Mixtures. Journal of Chemical & Engineering Data, 2010, 55, 1669-1674.	1.0	65
12	Isobaric Vaporâ^'Liquid Equilibria for 1-Propanol + Water + Calcium Nitrate. Journal of Chemical & Engineering Data, 1999, 44, 1216-1221.	1.0	62
13	Influence of hydrocarbon chain length and zeolite structure on the catalyst activity and deactivation for n-alkanes cracking. Applied Catalysis A: General, 1994, 117, 29-40.	2.2	57
14	Isobaric Vaporâ^'Liquid Equilibria for 1-Propanol + Water + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 2008, 53, 2426-2431.	1.0	57
15	IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite. Applied Catalysis A: General, 2013, 460-461, 106-115.	2.2	54
16	lsomerization of C5–C7 n-alkanes on unidirectional large pore zeolites: activity, selectivity and adsorption features. Catalysis Today, 2001, 65, 101-110.	2.2	53
17	Volumetric and Acoustic Properties of Aqueous Solutions of Trifluoromethanesulfonate-Based Ionic Liquids at Several Temperatures. Journal of Chemical & Engineering Data, 2012, 57, 1953-1963.	1.0	50
18	1-Ethyl-3-methylimidazolium Dicyanamide as a Very Efficient Entrainer for the Extractive Distillation of the Acetone + Methanol System. Journal of Chemical & Engineering Data, 2012, 57, 394-399.	1.0	49

Pablo J Miguel

#	Article	IF	CITATIONS
19	lsobaric Vapor–Liquid Equilibria for the Extractive Distillation of Ethanol + Water Mixtures Using 1-Ethyl-3-methylimidazolium Dicyanamide. Journal of Chemical & Engineering Data, 2011, 56, 4875-4880.	1.0	46
20	Product selectivity effects during cracking of alkanes at very short and longer times on stream. Applied Catalysis A: General, 1996, 138, 57-73.	2.2	43
21	Isobaric Vapor–Liquid Equilibria of 1-Propanol + Water + Trifluoromethanesulfonate-Based Ionic Liquid Ternary Systems at 100 kPa. Journal of Chemical & Engineering Data, 2011, 56, 4454-4460.	1.0	41
22	Refractive Indices and Deviations in Refractive Indices of Trifluoromethanesulfonate-Based Ionic Liquids in Water. Journal of Chemical & Engineering Data, 2011, 56, 4499-4504.	1.0	41
23	Isobaric Vaporâ^'Liquid Equilibria for Binary Systems Composed of Octane, Decane, and Dodecane at 20 kPa. Journal of Chemical & Engineering Data, 1996, 41, 93-96.	1.0	38
24	Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. Journal of Chemical Thermodynamics, 2017, 110, 16-24.	1.0	37
25	Influence of Some Ionic Liquids Containing the Trifluoromethanesulfonate Anion on the Vapor–Liquid Equilibria of the Acetone + Methanol System. Journal of Chemical & Engineering Data, 2011, 56, 4430-4435.	1.0	34
26	Isobaric vapor–liquid equilibria for acetone+methanol+lithium nitrate at 100kPa. Fluid Phase Equilibria, 2006, 250, 131-137.	1.4	32
27	Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures. Journal of Chemical & Engineering Data, 2011, 56, 4633-4642.	1.0	30
28	Cracking of long-chain alkyl aromatics on USY zeolite catalysts. Journal of Catalysis, 1992, 135, 45-59.	3.1	27
29	Zeolite Effects on the Cracking of Long Chain Alkyl Aromatics. Journal of Catalysis, 1994, 145, 181-186.	3.1	27
30	Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15K to 328.15K. Journal of Chemical Thermodynamics, 2006, 38, 1124-1129.	1.0	27
31	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, 1-Propanol, and 2-Propanol at Several Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 1430-1433.	1.0	26
32	Kinetics of the Catalytic Cracking of Paraffins at Very Short Times on Stream. Journal of Catalysis, 1994, 145, 58-64.	3.1	21
33	lsobaric vapor–liquid equilibria for 1-propanol+water+lithium nitrate at 100 kPa. Fluid Phase Equilibria, 2002, 202, 121-132.	1.4	20
34	Isobaric Vaporâ^'Liquid and Liquidâ^'Liquid Equilibria for Chloroform + Ethanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 2008, 53, 2642-2648.	1.0	20
35	Catalytic cracking of n-alkane naphtha: The impact of olefin addition and active sites differentiation. Journal of Catalysis, 2015, 330, 520-532.	3.1	19
36	Isobaric vapor-liquid equilibrium of binary mixtures of 1-propanol + chlorobenzene and 2-propanol + chlorobenzene. Fluid Phase Equilibria, 1997, 134, 151-161.	1.4	18

Pablo J Miguel

#	Article	IF	CITATIONS
37	Isobaric Vaporâ^'Liquid Equilibria of Tetrachloroethylene + 1-Propanol and +2-Propanol at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1996, 41, 1361-1365.	1.0	16
38	Isobaric Vaporâ^'Liquid and Liquidâ^'Liquid Equilibria for Chloroform + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical & Engineering Data, 2010, 55, 1209-1214.	1.0	16
39	Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science and Technology, 2017, 7, 5847-5859.	2.1	16
40	Isobaric Vaporâ´'Liquid Equilibria of Trichloroethylene with 1-Butanol and 2-Butanol at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1996, 41, 89-92.	1.0	15
41	Isobaric Vaporâ^'Liquid Equilibrium of Binary Mixtures of 1-Butanol + Chlorobenzene and 2-Butanol + Chlorobenzene at 20 and 100 kPa. Journal of Chemical & Engineering Data, 1997, 42, 374-378.	1.0	14
42	Can Macroscopic Parameters, Such as Conversion and Selectivity, Distinguish between Different Cracking Mechanisms on Acid Catalysts?. Journal of Catalysis, 1997, 172, 355-369.	3.1	14
43	Isobaric vapor–liquid equilibria for 1-propanol + water + lithium chloride at 100 kPa. Fluid Phase Equilibria, 2004, 216, 47-52.	1.4	14
44	Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures. Journal of Chemical Thermodynamics, 2018, 118, 292-301.	1.0	14
45	Optimization of the Zr-loading on siliceous support catalysts leads to a suitable Lewis/Brà nsted acid sites ratio to produce high yields to γ-valerolactone from furfural in one-pot. Fuel, 2022, 324, 124549.	3.4	14
46	Isobaric vapor-liquid equilibria for the 1-propanol + water + 1-ethyl-3-methylimidazolium dicyanamide system at 100 kPa. Journal of Chemical Thermodynamics, 2017, 113, 116-123.	1.0	11
47	Isobaric vapor–liquid equilibria for 1-propanol+water+copper(II) chloride at 100kPa. Fluid Phase Equilibria, 2005, 227, 239-244.	1.4	10
48	Vapor–liquid equilibrium of binary mixtures of trichloroethylene with 1-pentanol, 2-methyl-1-butanol and 3-methyl-1-butanol at 100 kPa. Fluid Phase Equilibria, 1999, 155, 229-239.	1.4	9
49	γ-valerolactone from levulinic acid and its esters: Substrate and reaction media determine the optimal catalyst. Applied Catalysis A: General, 2021, 623, 118276.	2.2	8
50	Isobaric vapor-liquid equilibria for the extractive distillation of tert-butyl alcohol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. Journal of Chemical Thermodynamics, 2019, 139, 105866.	1.0	7
51	Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite. RSC Advances, 2020, 10, 20395-20404.	1.7	7
52	On the Limitations To Establish the Contribution of the Different Reaction Mechanisms from Selectivity Data, During Cracking of Long-Chain Linear Paraffins. Industrial & Engineering Chemistry Research, 1997, 36, 3400-3415.	1.8	6
53	Vapor–liquid equilibrium of binary mixtures of chlorobenzene with 3-methyl-1-butanol, 3-methyl-2-butanol and 2-methyl-2-butanol, at 100 kPa. Fluid Phase Equilibria, 1998, 153, 265-277.	1.4	4
54	Vaporâ^'Liquid Equilibrium of Binary Mixtures of Tetrachloroethylene with 1-Pentanol, 3-Methyl-1-butanol, and 2-Methyl-1-butanol. Journal of Chemical & Engineering Data, 1999, 44, 286-290.	1.0	3

#	Article	IF	CITATIONS
55	Discrimination Models in Catalytic Cracking of n-Alkanes. Thermal Cracking Correction and Extended Dual Kinetic Model. , 0, , .		0