
Takeshi Noda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5604913/publications.pdf Version: 2024-02-01

TAKESHI NODA

#	Article	IF	CITATIONS
1	Thermally Stable MAPbI ₃ Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm ² achieved by Additive Engineering. Advanced Materials, 2017, 29, 1701073.	11.1	541
2	Highly Stable and Efficient FASnI ₃ â€Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Advanced Materials, 2019, 31, e1903721.	11.1	266
3	Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead-free Perovskite Solar Cells. Joule, 2020, 4, 902-912.	11.7	208
4	Enhanced Photovoltaic Performance of FASnI ₃ -Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive. ACS Energy Letters, 2018, 3, 1584-1589.	8.8	187
5	Templated growth of FASnI ₃ crystals for efficient tin perovskite solar cells. Energy and Environmental Science, 2020, 13, 2896-2902.	15.6	165
6	Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Science China Chemistry, 2020, 63, 107-115.	4.2	160
7	Coadditive Engineering with 5-Ammonium Valeric Acid Iodide for Efficient and Stable Sn Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 278-284.	8.8	153
8	Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells. Joule, 2018, 2, 296-306.	11.7	138
9	Highly Reproducible and Efficient FASnI ₃ Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. Journal of Physical Chemistry Letters, 2020, 11, 2965-2971.	2.1	115
10	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85
11	Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. ACS Applied Materials & Interfaces, 2018, 10, 22074-22082.	4.0	57
12	Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Lightâ€Absorbing Layer. Solar Rrl, 2020, 4, 2000240.	3.1	53
13	Optical properties of GaSb/GaAs type-ІІ quantum dots grown by droplet epitaxy. Applied Physics Letters, 2009, 94, 081911.	1.5	37
14	Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells. Solar Energy, 2019, 181, 243-250.	2.9	37
15	Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A. Applied Physics Letters, 2014, 104, .	1.5	24
16	Voltage dependence of two-step photocurrent generation in quantum dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 108-113.	3.0	23
17	Anisotropic Diffusion of In Atoms from an In Droplet and Formation of Elliptically Shaped InAs Quantum Dot Clusters on (100) GaAs. Crystal Growth and Design, 2011, 11, 726-728.	1.4	17
18	Growth of GaSb dots on GaAs(100) by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 733-735.	0.7	16

Takeshi Noda

#	Article	IF	CITATIONS
19	Growth of Metamorphic InGaAs on GaAs (111)A: Counteracting Lattice Mismatch by Inserting a Thin InAs Interlayer. Crystal Growth and Design, 2016, 16, 5412-5417.	1.4	15
20	Direct visualization of the N impurity state in dilute GaNAs using scanning tunneling microscopy. Nanoscale, 2015, 7, 16773-16780.	2.8	13
21	Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A. Japanese Journal of Applied Physics, 2015, 54, 04DH07.	0.8	13
22	Optically Imaged Striped Domains of Nonequilibrium Electronic and Nuclear Spins in a Fractional Quantum Hall Liquid. Physical Review Letters, 2017, 118, 076802.	2.9	13
23	Selective Deposition of Insulating Metal Oxide in Perovskite Solar Cells with Enhanced Device Performance. ChemSusChem, 2015, 8, 2625-2629.	3.6	10
24	Ordering of GaAs quantum dots by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 729-732.	0.7	9
25	Electrical Characteristics of AlGaAs/GaAs Heterostructures With a Pair of 2-D Electron and Hole Channels. IEEE Transactions on Electron Devices, 2015, 62, 3619-3626.	1.6	9
26	Selfâ€assembled GaAs quantum dots coupled with GaAs wetting layer grown on GaAs (311)A by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 257-259.	0.8	8
27	Double-Sided Nonalloyed Ohmic Contacts to Si-doped GaAs for Plasmoelectronic Devices. ACS Omega, 2019, 4, 7300-7307.	1.6	8
28	Photocurrent characteristics in p-i-n diodes with built-in coupled or uncoupled multi-quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 349-351.	0.8	7
29	Optical anisotropy of GaSb type-II nanorods on vicinal (111)B GaAs. Applied Physics Letters, 2011, 99, 231901.	1.5	5
30	Open-Circuit Voltage in AlGaAs Solar Cells With Embedded GaNAs Quantum Wells of Varying Confinement Depth. IEEE Journal of Photovoltaics, 2017, 7, 162-168.	1.5	5
31	Current–Voltage Characteristics of GaAs/AlGaAs Coupled Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND08.	0.8	5
32	Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination. Applied Physics Letters, 2015, 106, 022103.	1.5	4
33	Hyperfine-controlled domain-wall motion observed in real space and time. Physical Review B, 2016, 94, .	1.1	4
34	Effects of Mg doping on optical and electrical properties of GaNAs multiple quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 420-422.	0.8	3
35	Postâ€growth annealing of GaSb quantum dots in GaAs formed by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1505-1508.	0.8	3
36	Photoinduced current in n-AlGaAs/GaAs heterojunction field-effect transistor driven by local illumination in edge regions of Schottky metal gate. Japanese Journal of Applied Physics, 2017, 56, 04CG04.	0.8	3

Takeshi Noda

#	Article	IF	CITATIONS
37	Transmission and reflection of charge-density wave packets in a quantum Hall edge controlled by a metal gate. Applied Physics Letters, 2018, 112, .	1.5	3
38	Annealing-Induced Structural Evolution of InAs Quantum Dots on InP (111)A Formed by Droplet Epitaxy. Crystal Growth and Design, 2021, 21, 3947-3953.	1.4	3
39	Anomalous Capacitance–Voltage Characteristics of GaAs/AlGaAs Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND07.	0.8	3
40	Photo-induced current in n-AlGaAs/GaAs heterojunction channels driven by local illumination at the edge regions of Hall bar. Applied Physics Letters, 2013, 102, 252104.	1.5	2
41	Effectiveness of AlGaAs barrier layers as a redistribution channel of photoexcited carriers on anomalous temperature dependence of photoluminescence properties of GaAs quantum dots. Journal of Applied Physics, 2020, 128, 055701.	1.1	2
42	Direct observation of charge accumulation in quantum well solar cells by cross-sectional Kelvin probe force microscopy. Applied Physics Letters, 2020, 116, .	1.5	2
43	Extension of Absorption Wavelength in GaAs/AlGaAs Quantum Dots with Underlying Quantum Well for Solar Cell Application. Japanese Journal of Applied Physics, 2012, 51, 10ND14.	0.8	2
44	Evidence for a correlated phase of skyrmions observed in real space. Physical Review B, 2018, 98, .	1.1	1
45	Recent developments in droplet epitaxy. , 2014, , .		0
46	Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique. , 2014, , .		0
47	Effects of Ga deposition rate and Sb flux on morphology of GaSb quantum dots formed on GaAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 14, 1600109.	0.8	0
48	Carrier Transfer in Closely Stacked GaAs/AlGaAs Quantum Dots Grown by Using Droplet Epitaxy. Journal of the Korean Physical Society, 2018, 72, 1356-1363.	0.3	0
49	Temperature dependence of Schottky photocurrent for local gate edge illumination in n-AlGaAs/GaAs/AlGaAs double-heterojunction field-effect transistor. Japanese Journal of Applied Physics, 2019, 58, SIIB05.	0.8	0
50	Growth of GaSb quantum dots on GaAs (111)A. E-Journal of Surface Science and Nanotechnology, 2014, 12, 304-306.	0.1	0
51	Study on Carrier Separation in Perovskite Solar Cells by Operando Profiling of Electrical Potential Distribution. Vacuum and Surface Science, 2019, 62, 9-14.	0.0	0
52	Atomic-scale characterization of highly doped Si impurities in GaAs using scanning tunneling microscopy. Applied Surface Science, 2022, 583, 152373.	3.1	0