
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5604175/publications.pdf Version: 2024-02-01

ΗΛΝΥΙ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	19.5	662
2	Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy and Environmental Science, 2014, 7, 323-328.	30.8	594
3	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 4633-4636.	13.8	588
4	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	39.5	557
5	Prussian Blue Cathode Materials for Sodiumâ€ion Batteries and Other Ion Batteries. Advanced Energy Materials, 2018, 8, 1702619.	19.5	460
6	Hierarchical Carbon Framework Wrapped Na ₃ V ₂ (PO ₄) ₃ as a Superior Highâ€Rate and Extended Lifespan Cathode for Sodiumâ€lon Batteries. Advanced Materials, 2015, 27, 5895-5900.	21.0	448
7	Lowâ€Defect and Lowâ€Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703238.	19.5	414
8	Routes to High Energy Cathodes of Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501727.	19.5	408
9	Synergistic Na-Storage Reactions in Sn ₄ P ₃ as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Letters, 2014, 14, 1865-1869.	9.1	379
10	Highly Crystallized Na ₂ CoFe(CN) ₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5393-5399.	8.0	334
11	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10130.	10.3	295
12	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013, 31, 145-148.	4.7	289
13	Phosphate Framework Electrode Materials for Sodium Ion Batteries. Advanced Science, 2017, 4, 1600392.	11.2	275
14	Nanosized Na ₄ Fe(CN) ₆ /C Composite as a Lowâ€Cost and Highâ€Rate Cathode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 410-414.	19.5	257
15	Recent Progress in Rechargeable Sodiumâ€lon Batteries: toward Highâ€Power Applications. Small, 2019, 15, e1805427.	10.0	254
16	3D Graphene Decorated NaTi ₂ (PO ₄) ₃ Microspheres as a Superior Highâ€Rate and Ultracycleâ€6table Anode Material for Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502197.	19.5	251
17	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3895.	10.3	244
18	In Situ Generation of Few‣ayer Graphene Coatings on SnO ₂ â€&iC Coreâ€&hell Nanoparticles for Highâ€Performance Lithiumâ€Ion Storage. Advanced Energy Materials, 2012, 2, 95-102.	19.5	233

#	Article	IF	CITATIONS
19	Recent Advances in Sodium-Ion Battery Materials. Electrochemical Energy Reviews, 2018, 1, 294-323.	25.5	224
20	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. Journal of Materials Chemistry A, 2013, 1, 11397.	10.3	219
21	Graphene-Scaffolded Na ₃ V ₂ (PO ₄) ₃ Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7177-7184.	8.0	156
22	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	17.4	151
23	Stable Li Metal Anode with "Ion–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	17.4	148
24	Recent Progress in Ironâ€Based Electrode Materials for Gridâ€5cale Sodiumâ€ l on Batteries. Small, 2018, 14, 1703116.	10.0	146
25	Chemically Prelithiated Hard arbon Anode for High Power and High Capacity Liâ€Ion Batteries. Small, 2020, 16, e1907602.	10.0	144
26	A tin(<scp>ii</scp>) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16424-16428.	10.3	142
27	High-Performance Olivine NaFePO ₄ Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17977-17984.	8.0	141
28	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy, 2019, 56, 160-168.	16.0	134
29	A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7181.	10.3	130
30	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7406-7412.	10.3	130
31	Exploring Sodiumâ€ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ballâ€Milling Method. Small, 2018, 14, e1802694.	10.0	127
32	A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21095-21099.	8.0	125
33	Electrospun TiO ₂ /C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16684-16689.	8.0	121
34	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an "Adsorptionâ€Intercalation/Filling―Hybrid Mechanism. Advanced Energy Materials, 2022, 12, .	19.5	121
35	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24119-24126.	8.0	119
36	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	8.0	116

#	Article	IF	CITATIONS
37	Low Defect FeFe(CN) ₆ Framework as Stable Host Material for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23706-23712.	8.0	115
38	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Liâ€lon Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials, 2021, 31, 2101181.	14.9	115
39	Ultralowâ€Strain Znâ€Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	14.9	110
40	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5708-5713.	10.3	104
41	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4988.	10.3	103
42	Suppressing Voltage Fading of Liâ€Rich Oxide Cathode via Building a Wellâ€Protected and Partiallyâ€Protonated Surface by Polyacrylic Acid Binder for Cycleâ€Stable Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904264.	19.5	101
43	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25970-25975.	8.0	100
44	In Situ Grown Fe ₂ O ₃ Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 19900-19907.	8.0	97
45	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17620-17627.	8.0	95
46	Poly(anthraquinonyl imide) as a high capacity organic cathode material for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11491-11497.	10.3	91
47	A Nonflammable Na ⁺ â€Based Dualâ€Carbon Battery with Lowâ€Cost, High Voltage, and Long Cycle Life. Advanced Energy Materials, 2018, 8, 1802176.	19.5	90
48	Dual Core–Shell Structured Si@SiO _{<i>x</i>} @C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31611-31616.	8.0	88
49	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17768.	6.7	86
50	Understanding of the sodium storage mechanism in hard carbon anodes. , 2022, 4, 1133-1150.		83
51	Grapheneâ€Wrapped Na ₂ C ₁₂ H ₆ O ₄ Nanoflowers as High Performance Anodes for Sodiumâ€ion Batteries. Small, 2016, 12, 583-587.	10.0	82
52	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	17.3	81
53	Electroactive organic anionâ€doped polypyrrole as a low cost and renewable cathode for sodiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 114-118.	2.1	76
54	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1644-1652.	17.4	74

#	Article	IF	CITATIONS
55	Graphene-supported TiO ₂ nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11351-11356.	10.3	72
56	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23238-23242.	10.3	70
57	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 1337-1343.	8.0	69
58	Yolk–Shell TiO ₂ @C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 345-353.	8.0	69
59	Sulfurâ€Based Electrodes that Function via Multielectron Reactions for Roomâ€Temperature Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 18324-18337.	13.8	69
60	Building thermally stable Li-ion batteries using a temperature-responsive cathode. Journal of Materials Chemistry A, 2016, 4, 11239-11246.	10.3	68
61	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	19.5	68
62	Tunable Electrocatalytic Behavior of Sodiated MoS ₂ Active Sites toward Efficient Sulfur Redox Reactions in Roomâ€Temperature Na–S Batteries. Advanced Materials, 2021, 33, e2100229.	21.0	66
63	Fe(CN)6â^'4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. RSC Advances, 2012, 2, 5495.	3.6	64
64	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 11689-11698.	8.0	62
65	Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Advances, 2015, 5, 172-176.	3.6	61
66	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010, 20, 7266.	6.7	60
67	Highly Selective and Pollutionâ€Free Electrochemical Extraction of Lithium by a Polyaniline/Li _{<i>x</i>} Mn ₂ O ₄ Cell. ChemSusChem, 2019, 12, 1361-1367.	6.8	60
68	Electrolytes for Dual arbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	3.4	59
69	High Rate, Long Lifespan LiV ₃ O ₈ Nanorods as a Cathode Material for Lithiumâ€ion Batteries. Small, 2017, 13, 1603148.	10.0	57
70	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16411-16416.	8.0	55
71	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. Journal of Materials Chemistry A, 2018, 6, 23396-23407.	10.3	52
72	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38141-38150.	8.0	51

#	Article	IF	CITATIONS
73	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Interfaces, 2019, 11, 19218-19226.	8.0	51
74	Novel Alkaline Zn/Na _{0.44} MnO ₂ Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. ACS Applied Materials & Interfaces, 2018, 10, 34108-34115.	8.0	50
75	Microstructureâ€Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. Small, 2021, 17, e2102248.	10.0	50
76	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. ACS Applied Materials & Interfaces, 2016, 8, 18867-18877.	8.0	43
77	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. IScience, 2018, 10, 114-122.	4.1	43
78	Grapheneâ€Modified TiO ₂ Microspheres Synthesized by a Facile Sprayâ€Drying Route for Enhanced Sodiumâ€Ion Storage. Particle and Particle Systems Characterization, 2016, 33, 545-552.	2.3	42
79	Direct Regeneration of Spent Li-Ion Battery Cathodes via Chemical Relithiation Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 16384-16393.	6.7	42
80	The Influences of Organic Additives on Zinc Electrocrystallization from KCl Solutions. Journal of the Electrochemical Society, 1999, 146, 1789-1793.	2.9	40
81	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39651-39660.	8.0	40
82	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	8.0	40
83	Highly Electrochemicallyâ€Reversible Mesoporous Na ₂ FePO ₄ F/C as Cathode Material for Highâ€Performance Sodiumâ€ion Batteries. Small, 2019, 15, e1903723.	10.0	38
84	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on Na ₃ V ₂ (PO ₄) ₃ Cathode, NaTi ₂ (PO ₄) ₃ Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan. ACS Applied Materials & Interfaces, 2017, 9, 43733-43738.	8.0	36
85	Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5639-5647.	10.3	36
86	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	11.9	36
87	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	4.5	35
88	Exfoliation of MoS ₂ Nanosheets Enabled by a Redox-Potential-Matched Chemical Lithiation Reaction. Nano Letters, 2022, 22, 2956-2963.	9.1	35
89	Improved rate capability of the conducting functionalized FTO-coated Li-[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17113-17119.	10.3	34
90	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 729-735.	5.1	34

#	Article	IF	CITATIONS
91	Building a Cycle-Stable Fe–Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. ACS Applied Materials & Interfaces, 2020, 12, 30503-30509.	8.0	34
92	Amorphous NaVOPO ₄ as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chemistry, 2021, 3, 2428-2436.	7.8	34
93	Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode. Russian Journal of Electrochemistry, 2002, 38, 321-325.	0.9	33
94	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li ⁺ -conducting cathode-electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 11623-11631.	10.3	33
95	Sodiumâ€lon Batteries: Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). Advanced Energy Materials, 2018, 8, 1870079.	19.5	32
96	Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2019, 11, 13251-13256.	8.0	30
97	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11626-11633.	8.0	29
98	Surface Modification of Fe ₇ S ₈ /C Anode via Ultrathin Amorphous TiO ₂ Layer for Enhanced Sodium Storage Performance. Small, 2020, 16, e2000745.	10.0	28
99	Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2006, 10, 283-287.	2.5	27
100	Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2008, 12, 687-691.	2.5	27
101	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. Jom, 2016, 68, 2579-2584.	1.9	26
102	Building a Thermal Shutdown Cathode for Liâ€lon Batteries Using Temperatureâ€Responsive Poly(3â€Dodecylthiophene). Energy Technology, 2020, 8, 2000365.	3.8	26
103	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. Science China Chemistry, 2017, 60, 1546-1553.	8.2	24
104	A High-Voltage and Cycle Stable Aqueous Rechargeable Na-Ion Battery Based on Na ₂ Zn ₃ [Fe(CN) ₆] ₂ –NaTi ₂ (PO _{4Intercalation Chemistry. ACS Applied Energy Materials, 2019, 2, 5809-5815.})< s ub>3<	/su22at>
105	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	4.1	23
106	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 291-295.	2.5	22
107	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li ⁺ -conducting polymer. Journal of Materials Chemistry A, 2015, 3, 9938-9944.	10.3	22
108	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	7.4	22

#	Article	IF	CITATIONS
109	Synthesis of Monoclinic Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Nanoparticles by a Layeredâ€Template Route for Highâ€Performance Liâ€Ion Batteries. European Journal of Inorganic Chemistry, 2013, 2013, 2887-2892.	2.0	19
110	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19
111	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. ACS Applied Materials & Interfaces, 2021, 13, 18914-18922.	8.0	18
112	Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. Journal of Solid State Electrochemistry, 2007, 12, 149-153.	2.5	17
113	A Solidâ€Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithiumâ€&ulfur Batteries. Small, 2022, 18, e2106144.	10.0	16
114	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. ACS Applied Materials & Interfaces, 2019, 11, 45126-45132.	8.0	14
115	<i>In Situ</i> -Formed Artificial Solid Electrolyte Interphase for Boosting the Cycle Stability of Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 22505-22513.	8.0	14
116	A redoxâ€active polythiopheneâ€modified separator for safety control of lithiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1487-1493.	2.1	13
117	A controllable thermal-sensitivity separator with an organic–inorganic hybrid interlayer for high-safety lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2313-2319.	5.9	10
118	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. Jom, 2016, 68, 2607-2612.	1.9	9
119	Schwefelâ€basierte Elektroden mit Mehrelektronenreaktionen für Raumtemperaturâ€Natriumionenspeicherung. Angewandte Chemie, 2019, 131, 18490-18504.	2.0	9
120	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 274-279.	2.6	9
121	Low temperature hydrothermal synthesis and electrochemical performances of LiFePO4 microspheres as a cathode material for lithium-ion batteries. Science Bulletin, 2012, 57, 4164-4169.	1.7	6
122	Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5236-5244.	5.1	6
123	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage (Adv. Energy Mater. 1/2012). Advanced Energy Materials, 2012, 2, 94-94.	19.5	5
124	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 32771-32777.	8.0	5
125	An efficient and nonflammable organic phosphate electrolyte for dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 1939-1942.	2.9	2