Vivek Rangarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5604172/publications.pdf

Version: 2024-02-01

566801 525886 26 994 15 27 g-index citations h-index papers 27 27 27 1179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences, 2013, 34, 667-675.	4.0	293
2	Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, 2015, 52, 1539-1558.	8.2	174
3	Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. Journal of Biotechnology, 2017, 256, 46-56.	1.9	64
4	Antimicrobial activity and biodegradation behavior of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td	(adipateâ	€ ∢i >coâ⁴
5	Investigation on Sodium Benzoate Release from Poly(Butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 Antimicrobial Activity. Journal of Food Science, 2015, 80, E602-9.	' Td (Adipa 1.5	iteâ€Coâ€Te 35
6	Process development and intensification for enhanced production of <i>Bacillus </i> lipopeptides. Biotechnology and Genetic Engineering Reviews, 2015, 31, 46-68.	2.4	34
7	Timeâ€dependent dosing of Fe ²⁺ for improved lipopeptide production by marine <i>Bacillus megaterium</i> . Journal of Chemical Technology and Biotechnology, 2012, 87, 1661-1669.	1.6	31
8	An inexpensive strategy for facilitated recovery of metals and fermentation products by foam fractionation process. Colloids and Surfaces B: Biointerfaces, 2013, 104, 99-106.	2.5	31
9	Towards bacterial lipopeptide products for specific applications $\hat{a}\in$ " a review of appropriate downstream processing schemes. Process Biochemistry, 2016, 51, 2176-2185.	1.8	30
10	Bioprocess design for selective enhancement of fengycin production by a marine isolate Bacillus megaterium. Biochemical Engineering Journal, 2015, 99, 147-155.	1.8	29
11	Improved performance of cross-flow ultrafiltration for the recovery and purification of Ca2+ conditioned lipopeptides in diafiltration mode of operation. Journal of Membrane Science, 2014, 454, 436-443.	4.1	24
12	Sustainable and Green Engineering Insights on Deep Eutectic Solvents toward the Extraction of Nutraceuticals. ACS Sustainable Chemistry and Engineering, 2021, 9, 11290-11313.	3.2	23
13	Dual gradient macroporous resin column chromatography for concurrent separation and purification of three families of marine bacterial lipopeptides from cell free broth. Separation and Purification Technology, 2015, 143, 72-79.	3.9	20
14	Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR). Energies, 2021, 14, 4684.	1.6	19
15	A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. Journal of Surfactants and Detergents, 2022, 25, 303-319.	1.0	17
16	Bacillus lipopeptides: powerful capping and dispersing agents of silver nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 1809-1821.	1.6	15
17	Development and Scale-up of an Efficient and Green Process for HPLC Purification of Antimicrobial Homologues of Commercially Important Microbial Lipopeptides. ACS Sustainable Chemistry and Engineering, 2016, 4, 6638-6646.	3.2	14
18	A kinetics study on surfactin production from Bacillus subtilis MTCC 2415 for application in green cosmetics. Biocatalysis and Agricultural Biotechnology, 2021, 33, 102001.	1.5	13

#	Article	IF	CITATIONS
19	An investigation on citrus peel as the lignocellulosic feedstock for optimal reducing sugar synthesis with an additional scope for the production of hydrolytic enzymes from the aqueous extract waste. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101259.	1.5	10
20	A simple thin layer chromatography based method for the quantitative analysis of biosurfactant surfactin vis-a-vis the presence of lipid and protein impurities in the processing liquid. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101587.	1.5	10
21	Current perspective on improved fermentative production and purification of fungal cellulases for successful biorefinery applications: a brief review. Biomass Conversion and Biorefinery, 2022, 12, 967-995.	2.9	10
22	Formulation of a stable biocosmetic nanoemulsion using a <i>Bacillus</i> lipopeptide as the green-emulsifier for skin-care applications. Journal of Dispersion Science and Technology, 2023, 44, 2045-2057.	1.3	9
23	Toward the formulation of bio-cosmetic nanoemulsions: from plant-derived to microbial-derived ingredients. Journal of Dispersion Science and Technology, 2022, 43, 1061-1078.	1.3	8
24	Microbial Production of Value-added Products from Cashew Apples- an Economical Boost to Cashew Farmers. Journal of Pure and Applied Microbiology, 2021, 15, 1816-1832.	0.3	8
25	Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions. 3 Biotech, 2017, 7, 310.	1.1	6
26	Modeling and Analysis of Micellar and Microbubble Dynamics To Derive New Insights in Molecular Interactions Impacting the Packing Behavior of a Green Surfactant for Potential Engineering Implications. ACS Sustainable Chemistry and Engineering, 2018, 6, 4046-4055.	3.2	6