Hisato Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer. ACS Applied Materials & Interfaces, 2022, 14, 1710-1717.	8.0	8
2	Direct Heteroepitaxy and Selective Area Growth of GaP and GaAs on Si by Hydride Vapor Phase Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000447.	1.8	2
3	Direct Heteroepitaxy of Orientationâ€Patterned GaP on GaAs by Hydride Vapor Phase Epitaxy for Quasiâ€Phaseâ€Matching Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900627.	1.8	3
4	An extended moments model of quantum efficiency for metals and semiconductors. Journal of Applied Physics, 2020, 128, .	2.5	6
5	Gas Barrier Properties of Chemical Vapor-Deposited Graphene to Oxygen Imparted with Sub-electronvolt Kinetic Energy. Journal of Physical Chemistry Letters, 2020, 11, 9159-9164.	4.6	5
6	Graphene as reusable substrate for bialkali photocathodes. Applied Physics Letters, 2020, 116, 251903.	3.3	5
7	Graphene Supported MoS ₂ Structures with High Defect Density for an Efficient HER Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 12629-12638.	8.0	101
8	Angular scattering of protons through ultrathin graphene foils: Application for time-of-flight instrumentation. Review of Scientific Instruments, 2020, 91, 033302.	1.3	2
9	Opto-electro-mechanical percolative composites from 2D layered materials: Properties and applications in strain sensing. Composites Science and Technology, 2019, 182, 107687.	7.8	13
10	Nonlinear Absorption and Photocurrent in Weyl Semimetals. Physica Status Solidi (B): Basic Research, 2019, 256, 1900305.	1.5	8
11	Quantum Efficiency Enhancement of Bialkali Photocathodes by an Atomically Thin Layer on Substrates. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900501.	1.8	6
12	Development of Orientation-Patterned GaP Growth on GaAs for Nonlinear Frequency Conversion. , 2019, , .		0
13	Polariton hyperspectral imaging of two-dimensional semiconductor crystals. Scientific Reports, 2019, 9, 13756.	3.3	7
14	Tuning the Fröhlich exciton-phonon scattering in monolayer MoS2. Nature Communications, 2019, 10, 807.	12.8	65
15	Freeâ€ S tanding Bialkali Photocathodes Using Atomically Thin Substrates. Advanced Materials Interfaces, 2018, 5, 1800249.	3.7	14
16	A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory. Journal of Applied Physics, 2018, 123, .	2.5	15
17	Perspectives on Designer Photocathodes for X-ray Free-Electron Lasers: Influencing Emission Properties with Heterostructures and Nanoengineered Electronic States. Physical Review Applied, 2018, 10, .	3.8	36

Photocathode: Free-Standing Bialkali Photocathodes Using Atomically Thin Substrates (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

HISATO YAMAGUCHI

#	Article	IF	CITATIONS
19	Signatures of defect-localized charged excitons in the photoluminescence of monolayer molybdenum disulfide. Physical Review Materials, 2018, 2, .	2.4	5
20	Opto-valleytronic imaging of atomically thin semiconductors. Nature Nanotechnology, 2017, 12, 329-334.	31.5	55
21	Active bialkali photocathodes on free-standing graphene substrates. Npj 2D Materials and Applications, 2017, 1 Applications, 2017, 1 Layer dependence of the electronic band alignment of few-layer <mml:math< td=""><td>7.9</td><td>24</td></mml:math<>	7.9	24
22	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>Mo < mml:msub> < mml:m mathvariant="normal">S < /mml:mi> < mml:mn>2 < /mml:mn> < /mml:msub> < /mml:mrow> < /mml:mrow> < /mml:math> on < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>Si < mml:msub> < mml:mi	ii 3.2	35
23	mathvariant="normal">O <mml:mn>2</mml:mn> Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386.	1.8	13
24	Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes. Scientific Reports, 2016, 6, 21601.	3.3	35
25	Characterization of 2D MoS2 and WS2 Dispersed in Organic Solvents for Composite Applications. MRS Advances, 2016, 1, 2303-2308.	0.9	6
26	Effects of Synthesis Parameters on CVD Molybdenum Disulfide Growth. MRS Advances, 2016, 1, 2291-2296.	0.9	9
27	Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS ₂ . ACS Nano, 2015, 9, 840-849.	14.6	58
28	Direct Imaging of Charge Transport in Progressively Reduced Graphene Oxide Using Electrostatic Force Microscopy. ACS Nano, 2015, 9, 2981-2988.	14.6	29
29	Reduced Graphene Oxide Thin Films as Ultrabarriers for Organic Electronics. Advanced Energy Materials, 2014, 4, 1300986.	19.5	59
30	Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014, 8, 1263-1272.	14.6	534
31	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	5.6	160
32	Electronic Structure and Chemical Nature of Oxygen Dopant States in Carbon Nanotubes. ACS Nano, 2014, 8, 10782-10789.	14.6	131
33	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	27.5	2,326
34	Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode. Sensors, 2013, 13, 13744-13778.	3.8	41
35	Field Emission Mechanism of H-Terminated N-Type Diamond NEA Surface. Materials Research Society Symposia Proceedings, 2012, 1395, 51.	0.1	0
36	Free-standing graphene on microstructured silicon vertices for enhanced field emission properties. Nanoscale, 2012, 4, 3069.	5.6	58

HISATO YAMAGUCHI

#	Article	IF	CITATIONS
37	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	14.6	806
38	Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie - International Edition, 2012, 51, 6662-6666.	13.8	584
39	Flexible and Metal-Free Light-Emitting Electrochemical Cells Based on Graphene and PEDOT-PSS as the Electrode Materials. ACS Nano, 2011, 5, 574-580.	14.6	110
40	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	14.6	139
41	Flame synthesis of graphene films in open environments. Carbon, 2011, 49, 5064-5070.	10.3	90
42	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	9.1	3,402
43	Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 2010, 22, 505-509.	21.0	1,824
44	Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 2010, 4, 637-642.	14.6	266
45	Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano, 2010, 4, 524-528.	14.6	209
46	Insulator to Semimetal Transition in Graphene Oxide. Journal of Physical Chemistry C, 2009, 113, 15768-15771.	3.1	577
47	Large area deposition of graphene thin films by Langmuir-Blodgett assembly and their optoelectronic properties. , 2009, , .		1
48	Clarification of band structure at metal–diamond contact using device simulation. Applied Surface Science, 2008, 254, 6285-6288.	6.1	3
49	Sensitivity to red/green/blue illumination of amorphous selenium based photodetector driven by nitrogen (N)-Doped CVD diamond. Diamond and Related Materials, 2008, 17, 95-99.	3.9	4
50	Field Emission from Modified P-Doped Diamond Surfaces with Different Barrier Heights. Japanese Journal of Applied Physics, 2008, 47, 8921-8924.	1.5	10
51	Field emission characteristics of surface-reconstructed heavily phosphorus-doped homoepitaxial diamond. Journal of Vacuum Science & Technology B, 2007, 25, 528.	1.3	8
52	The Origin of Field-induced Electron Emission from N-doped CVD Diamond Characterized by Combined XPS/UPS/FES System. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
53	Barrier Height Difference Induced by Surface Terminations for Field Emission from P-doped Diamond. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
54	Field emission from surfaceâ€modified heavily phosphorusâ€doped homoepitaxial (111) diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2957-2964.	1.8	21

Нізато Үамадисні

#	Article	IF	CITATIONS
55	Field emission process of O-terminated heavily P-doped homoepitaxial diamond. Diamond and Related Materials, 2006, 15, 863-865.	3.9	8
56	Amorphous selenium based photodetector driven by field emission current from N-doped diamond cold cathode. Journal of Vacuum Science & Technology B, 2006, 24, 1035.	1.3	7
57	Field emission from reconstructed heavily phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2006, 88, 212114.	3.3	39
58	Electron emission mechanism of diamond characterized using combined x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy system. Applied Physics Letters, 2006, 88, 202101.	3.3	21
59	Field emission mechanism of oxidized highly phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2005, 87, 234107.	3.3	24
60	Electron emission from heavily nitrogen-doped heteroepitaxial chemical vapor deposition diamond. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1327.	1.6	2
61	Broad area electron emission from oxygen absorbed homoepitaxially grown nitrogen (N)-doped chemical vapor deposited diamond (111) surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1730.	1.6	13
62	Diode structure amorphous selenium photodetector with nitrogen (N)-doped diamond cold cathode. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1586.	1.6	10