## Lars Giebeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603964/publications.pdf

Version: 2024-02-01

50170 66788 6,958 146 46 78 citations h-index g-index papers 149 149 149 10671 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Selective Adsorption and Separation of <i>ortho</i> -Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. Journal of the American Chemical Society, 2008, 130, 14170-14178.                                              | 6.6  | 376       |
| 2  | Functional Mesoporous Carbonâ€Coated Separator for Longâ€Life, Highâ€Energy Lithium–Sulfur Batteries.<br>Advanced Functional Materials, 2015, 25, 5285-5291.                                                                                       | 7.8  | 374       |
| 3  | Fast and Selective Sugar Conversion to Alkyl Lactate and Lactic Acid with Bifunctional Carbon–Silica<br>Catalysts. Journal of the American Chemical Society, 2012, 134, 10089-10101.                                                               | 6.6  | 337       |
| 4  | Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy and Environmental Science, 2015, 8, 230-240.                                                                                                                     | 15.6 | 202       |
| 5  | Metal-based nanostructured materials for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 23127-23168.                                                                                                                | 5.2  | 195       |
| 6  | Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2013, 15, 6080.                                                                       | 1.3  | 167       |
| 7  | Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Materials, 2017, 6, 26-35.                                                                             | 9.5  | 166       |
| 8  | Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite. ACS Catalysis, 2015, 5, 928-940.                                                                                                                                   | 5.5  | 164       |
| 9  | Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S<br>Dual-Doped Mesoporous Carbon Coating for Advanced Lithium–Sulfur Batteries. ACS Applied<br>Materials & Interfaces, 2016, 8, 14586-14595.      | 4.0  | 153       |
| 10 | Multimetallic Aerogels by Template-Free Self-Assembly of Au, Ag, Pt, and Pd Nanoparticles. Chemistry of Materials, 2014, 26, 1074-1083.                                                                                                            | 3.2  | 148       |
| 11 | Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Materials and Design, 2016, 89, 335-341.                                                                                                                 | 3.3  | 135       |
| 12 | SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders. Physical Chemistry Chemical Physics, 2015, 17, 24956-24967.                                      | 1.3  | 129       |
| 13 | Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 562-570. | 2.6  | 121       |
| 14 | Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 4580-4587.                                                                  | 1.5  | 120       |
| 15 | Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries, 2018, 4, 7.                                                                                                                         | 2.1  | 116       |
| 16 | Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. Journal of Power Sources, 2016, 303, 317-324.                                   | 4.0  | 114       |
| 17 | Solventâ€Free Mechanochemical Synthesis of Nitrogenâ€Doped Nanoporous Carbon for Electrochemical Energy Storage. ChemSusChem, 2017, 10, 2416-2424.                                                                                                 | 3.6  | 109       |
| 18 | Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO <sub>x</sub> by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.                                                                     | 7.3  | 108       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Direct Observation of Molecularâ€Level Template Action Leading to Selfâ€Assembly of a Porous Framework. Chemistry - A European Journal, 2010, 16, 3926-3932.                                                                 | 1.7  | 106       |
| 20 | Hierarchical Carbideâ€Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energyâ€Storage Material. Advanced Energy Materials, 2014, 4, 1300645.                                                 | 10.2 | 96        |
| 21 | Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes. Energy Storage Materials, 2018, 10, 206-215.                               | 9.5  | 91        |
| 22 | Role of 1,3-Dioxolane and LiNO <sub>3</sub> Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2016, 163, A557-A564.    | 1.3  | 83        |
| 23 | Enhanced polysulphide redox reaction using a RuO <sub>2</sub> nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium–sulphur batteries. Chemical Communications, 2016, 52, 8134-8137. | 2.2  | 81        |
| 24 | Nitrogenâ€Doped Biomassâ€Derived Carbon Formed by Mechanochemical Synthesis for Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 310-319.                                                                                    | 3.6  | 81        |
| 25 | The Importance of Pore Size and Surface Polarity for Polysulfide Adsorption in Lithium Sulfur Batteries. Advanced Materials Interfaces, 2016, 3, 1600508.                                                                    | 1.9  | 76        |
| 26 | Binding Energy Referencing for XPS in Alkali Metal-Based Battery Materials Research (II): Application to Complex Composite Electrodes. Batteries, 2018, 4, 36.                                                               | 2.1  | 75        |
| 27 | Elastic softening of β-type Ti–Nb alloys by indium (In) additions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 162-174.                                                                            | 1.5  | 73        |
| 28 | Heterogeneously catalysed partial oxidation of acrolein to acrylic acidâ€"structure, function and dynamics of the Vâ€"Moâ€"W mixed oxides. Physical Chemistry Chemical Physics, 2007, 9, 3577-3589.                          | 1.3  | 72        |
| 29 | Titania-Silica Catalysts for Lactide Production from Renewable Alkyl Lactates: Structure–Activity<br>Relations. ACS Catalysis, 2018, 8, 8130-8139.                                                                           | 5.5  | 70        |
| 30 | High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability. Scientific Reports, 2016, 6, 27982.                                                         | 1.6  | 69        |
| 31 | Reconfiguration of lithium sulphur batteries: "Enhancement of Li–S cell performance by employing a highly porous conductive separator coating― Journal of Power Sources, 2016, 309, 76-81.                                   | 4.0  | 69        |
| 32 | A novel high-throughput setup for <i>in situ</i> powder diffraction on coin cell batteries. Journal of Applied Crystallography, 2016, 49, 340-345.                                                                           | 1.9  | 68        |
| 33 | On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion. Nano Energy, 2018, 54, 116-128.                                                                   | 8.2  | 67        |
| 34 | Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites. Journal of Applied Crystallography, 2014, 47, 1374-1379.                                                                                            | 1.9  | 65        |
| 35 | Processing of Ti-5553 with improved mechanical properties via an in-situ heat treatment combining selective laser melting and substrate plate heating. Materials and Design, 2017, 130, 83-89.                               | 3.3  | 64        |
| 36 | Role of Surface Functional Groups in Ordered Mesoporous Carbide-Derived Carbon/Ionic Liquid Electrolyte Double-Layer Capacitor Interfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2922-2928.                     | 4.0  | 61        |

| #  | Article                                                                                                                                                                                                                                   | IF          | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 37 | Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 137-150.                                                   | 1.5         | 61        |
| 38 | Advances in <i>in situ </i> powder diffraction of battery materials: a case study of the new beamline PO2.1 at DESY, Hamburg. Journal of Applied Crystallography, 2013, 46, 1117-1127.                                                    | 1.9         | 57        |
| 39 | Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18015-18021.      | 4.0         | 56        |
| 40 | Asymmetric first-order transition and interlocked particle state in magnetocaloric La(Fe,Si) <sub>13</sub> . Physica Status Solidi - Rapid Research Letters, 2015, 9, 136-140.                                                            | 1.2         | 54        |
| 41 | Low Voltage Transmission Electron Microscopy of Graphene. Small, 2015, 11, 515-542.                                                                                                                                                       | 5.2         | 54        |
| 42 | Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 366-374. | 2.6         | 52        |
| 43 | Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 2021, 87, 100929.                                                                              | 15.8        | 52        |
| 44 | Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1%. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12930-12935.                                                   | 4.0         | 51        |
| 45 | Self-Organized TiO <sub>2</sub> /CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2015, 3, 909-919.                                                                       | 3.2         | 50        |
| 46 | Softwood Lignin as a Sustainable Feedstock for Porous Carbons as Active Material for Supercapacitors Using an Ionic Liquid Electrolyte. ACS Sustainable Chemistry and Engineering, 2017, 5, 4094-4102.                                    | 3.2         | 50        |
| 47 | Silicon oxycarbide-derived carbons from a polyphenylsilsequioxane precursor for supercapacitor applications. Microporous and Mesoporous Materials, 2014, 188, 140-148.                                                                    | 2.2         | 48        |
| 48 | Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Materials, 2017, 8, 209-216.                                                     | 9.5         | 47        |
| 49 | Anodically fabricated TiO <sub>2</sub> –SnO <sub>2</sub> nanotubes and their application in lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 5542-5552.                                                                  | <b>5.</b> 2 | 46        |
| 50 | Size-dependent structural, magnetic, and optical properties of MnCo2O4 nanocrystallites. Journal of Applied Physics, 2017, 121, .                                                                                                         | 1.1         | 45        |
| 51 | LaMnO <sub>3</sub> Perovskite Supported Noble Metal Catalysts for the Total Oxidation of Methane.<br>Chemical Engineering and Technology, 2007, 30, 889-894.                                                                              | 0.9         | 44        |
| 52 | Tailoring Hollow Silicon–Carbon Nanocomposites As High-Performance Anodes in Secondary Lithium-Based Batteries through Economical Chemistry. Chemistry of Materials, 2015, 27, 37-43.                                                     | 3.2         | 42        |
| 53 | In Situ Raman Spectroscopy on Silicon Nanowire Anodes Integrated in Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5378-A5385.                                                                                | 1.3         | 42        |
| 54 | Microstructure and abrasive wear behavior of a novel FeCrMoVC laser cladding alloy for high-performance tool steels. Wear, 2017, 382-383, 107-112.                                                                                        | 1.5         | 41        |

| #  | Article                                                                                                                                                                                                                                                             | IF           | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 55 | Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scripta Materialia, 2017, 126, 41-44.                                                                                                   | 2.6          | 41        |
| 56 | Fully sp <sup>2</sup> â€Carbonâ€Linked Crystalline Twoâ€Dimensional Conjugated Polymers: Insight into 2D Poly(phenylenecyanovinylene) Formation and its Optoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6562-6568.                             | 1.7          | 40        |
| 57 | Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle Anode Material for Lithium-Based Batteries—the Phosphorus Path. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7096-7106.                                                         | 4.0          | 39        |
| 58 | Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 160-169.                                                                    | 1.1          | 38        |
| 59 | Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon, 2014, 79, 302-309.                                                                                                                                    | 5.4          | 38        |
| 60 | Structural changes of vanadium–molybdenum–tungsten mixed oxide catalysts during the selective oxidation of acrolein to acrylic acid. Journal of Molecular Catalysis A, 2006, 259, 309-318.                                                                          | 4.8          | 36        |
| 61 | Structural Aspects of P2â€Type Na <sub>0.67</sub> Mn <sub>0.66/sub&gt;Ni<sub>0.2</sub>Li<sub>0.2</sub>O<sub>2</sub> (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodiumâ€ion Batteries. Advanced Functional Materials. 2021. 31. 2102939.</sub> | 7.8          | 35        |
| 62 | A facile method to stabilize sodium metal anodes towards high-performance sodium batteries. Journal of Materials Chemistry A, 2021, 9, 9038-9047.                                                                                                                   | <b>5.</b> 2  | 34        |
| 63 | Novel <i>iin situ</i> cell for Raman diagnostics of lithium-ion batteries. Review of Scientific Instruments, 2013, 84, 073109.                                                                                                                                      | 0.6          | 33        |
| 64 | Enhanced Acidity and Accessibility in Al-MCM-41 through Aluminum Activation. Chemistry of Materials, 2016, 28, 7731-7743.                                                                                                                                           | 3.2          | 32        |
| 65 | Electrodeposited films to MOF-derived electrochemical energy storage electrodes: a concept of simplified additive-free electrode processing for self-standing, ready-to-use materials. Journal of Materials Chemistry A, 2017, 5, 18420-18428.                      | 5.2          | 32        |
| 66 | CO2reverse selective mixed matrix membranes for H2purification by incorporation of carbon–silica fillers. Journal of Materials Chemistry A, 2013, 1, 945-953.                                                                                                       | 5.2          | 31        |
| 67 | Hierarchically nanostructured hollow carbon nanospheres for ultra-fast and long-life energy storage. Carbon, 2016, 106, 306-313.                                                                                                                                    | 5 <b>.</b> 4 | 31        |
| 68 | Effect of short-term tempering on microstructure and mechanical properties of high-strength FeCrMoVC. Acta Materialia, 2012, 60, 4468-4476.                                                                                                                         | 3.8          | 30        |
| 69 | Low-Temperature Tailoring of Copper-Deficient Cu <sub>3–<i>x</i></sub> P—Electric Properties, Phase Transitions, and Performance in Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 7111-7123.                                                             | 3.2          | 30        |
| 70 | Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. Journal of Materials Science, 2017, 52, 4944-4956.                                                                                                           | 1.7          | 29        |
| 71 | Capacitance performance of cobalt hydroxide-based capacitors with utilization of near-neutral electrolytes. Electrochimica Acta, 2013, 90, 166-170.                                                                                                                 | 2.6          | 28        |
| 72 | Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9262-9271.                                                                                            | 5 <b>.</b> 2 | 28        |

| #          | Article                                                                                                                                                                                                                                                                                   | IF              | CITATIONS          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 73         | S and B microalloying of biodegradable Fe-30Mn-1C - Effects on microstructure, tensile properties, in vitro degradation and cytotoxicity. Materials and Design, 2018, 142, 22-35.                                                                                                         | 3.3             | 28                 |
| 74         | LiV <sub>3</sub> O <sub>8</sub> -Based Functional Separator Coating as Effective Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 2893-2899.                                                                                                     | 2.5             | 27                 |
| <b>7</b> 5 | Hierarchical Tiâ€Beta Obtained by Simultaneous Desilication and Titanation as an Efficient Catalyst for Cyclooctene Epoxidation. ChemCatChem, 2017, 9, 3860-3869.                                                                                                                         | 1.8             | 26                 |
| 76         | Silicon monophosphide as a possible lithium battery anode material. Journal of Materials Chemistry A, 2018, 6, 19974-19978.                                                                                                                                                               | 5.2             | 26                 |
| 77         | Effect of cooling rate on the microstructure and properties of FeCrVC. Journal of Alloys and Compounds, 2015, 634, 200-207.                                                                                                                                                               | 2.8             | 25                 |
| 78         | Alloying Behavior of Selfâ€Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, 13446-13450.                                                                                                                                                                    | 1.7             | 25                 |
| 79         | Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System. Metals, 2017, 7, 135.                                                                                                                                                                         | 1.0             | 25                 |
| 80         | An Efficient Two-Polymer Binder for High-Performance Silicon Nanoparticle-Based Lithium-Ion Batteries: A Systematic Case Study with Commercial Polyacrylic Acid and PolyvinylÂButyral Polymers. Journal of the Electrochemical Society, 2019, 166, A5275-A5286.                           | 1.3             | 24                 |
| 81         | Functionalised porous nanocomposites: a multidisciplinary approach to investigate designed structures for supercapacitor applications. Journal of Materials Chemistry A, 2013, 1, 4904.                                                                                                   | 5.2             | 22                 |
| 82         | Magnetic field assisted nanoparticle dispersion. Chemical Communications, 2008, , 47-49.                                                                                                                                                                                                  | 2.2             | 21                 |
| 83         | NaAlH4 confined in ordered mesoporous carbon. International Journal of Hydrogen Energy, 2013, 38, 8829-8837.                                                                                                                                                                              | 3.8             | 21                 |
| 84         | A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte. Electrochimica Acta, 2019, 296, 243-250.                                                                                                               | 2.6             | 21                 |
| 85         | Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO <sub>2</sub> –3 mol%) Tj ETQq1 1 the American Ceramic Society, 2010, 93, 2864-2870.                                                                                                                             | 0.784314<br>1.9 | 1 rgBT /Over<br>20 |
| 86         | Local magnetism and structural properties of Heusler <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Ni</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">MnGa</mml:mi></mml:math> alloys. Physical Review B, 2015, 91, . | 1.1             | 20                 |
| 87         | Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion. Inorganic Chemistry, 2016, 55, 7079-7089.                                                                                                                               | 1.9             | 20                 |
| 88         | Electrodeposition of manganese layers from sustainable sulfate based electrolytes. Surface and Coatings Technology, 2018, 334, 261-268.                                                                                                                                                   | 2.2             | 20                 |
| 89         | MXenes in lithium–sulfur batteries: Scratching the surface of a complex 2D material – A minireview. Materials Today Communications, 2021, 27, 102323.                                                                                                                                     | 0.9             | 20                 |
| 90         | Microstructural and mechanical characterization of an ultra-high-strength Fe86.7Cr4.4Mo0.6V1.1W2.5C4.7 alloy. Journal of Materials Science, 2012, 47, 267-271.                                                                                                                            | 1.7             | 19                 |

| #   | Article                                                                                                                                                                                                               | IF          | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 91  | Graphitic nanocrystals inside the pores of mesoporous silica: Synthesis, characterization and an adsorption study. Microporous and Mesoporous Materials, 2011, 144, 120-133.                                          | 2.2         | 18        |
| 92  | The effect of boron on microstructure and mechanical properties of high-strength cast FeCrVC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 267-275. | 2.6         | 17        |
| 93  | B1â€Mobilstor: Materials for Sustainable Energy Storage Techniques – Lithium Containing Compounds for Hydrogen and Electrochemical Energy Storage. Advanced Engineering Materials, 2014, 16, 1189-1195.               | 1.6         | 17        |
| 94  | Highâ€Pressureâ€Sinteringâ€Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Halfâ€Heusler Compounds. Small, 2021, 17, e2102045.                                                | 5.2         | 17        |
| 95  | The impact of surface morphology on the magnetovolume transition in magnetocaloric LaFe <sub>11.8</sub> Si <sub>1.2</sub> . APL Materials, 2016, 4, 106101.                                                           | 2.2         | 16        |
| 96  | Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na–ion batteries. Journal of Power Sources, 2018, 373, 1-10.                                                                                       | 4.0         | 15        |
| 97  | Operando Studies of Antiperovskite Lithium Battery Cathode Material (Li <sub>2</sub> Fe)SO. ACS Applied Energy Materials, 2018, 1, 6593-6599.                                                                         | 2.5         | 15        |
| 98  | Study on the reversible Li-insertion of amorphous and partially crystalline Al86Ni8La6 and Al86Ni8Y6 alloys as anode materials for Li-ion batteries. Electrochimica Acta, 2012, 60, 85-94.                            | 2.6         | 14        |
| 99  | Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries. Materials, 2017, 10, 678.                                                                             | 1.3         | 14        |
| 100 | On the origin of mesopore collapse in functionalized porous carbons. Carbon, 2019, 149, 743-749.                                                                                                                      | 5.4         | 14        |
| 101 | Investigation of Copper-Cobalt-Oxides as Model Systems for Composite Interactions in Conversion-Type Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1333-A1339.            | 1.3         | 13        |
| 102 | Co(II) ethylene glycol carboxylates for Co3O4 nanoparticle and nanocomposite formation. Journal of Materials Science, 2017, 52, 6697-6711.                                                                            | 1.7         | 13        |
| 103 | Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca <sup>2+</sup> in motoneurons. Nanoscale, 2019, 11, 16103-16113.                                                                       | 2.8         | 13        |
| 104 | Improving the thermoelectric performance of ZrNi(In,Sb)-based double half-Heusler compounds. Journal of Materials Chemistry A, 2022, 10, 13476-13483.                                                                 | <b>5.</b> 2 | 13        |
| 105 | Na–Sb–Sn ternary phase diagram at room temperature for potential anode materials in sodium-ion batteries. Solid State Ionics, 2014, 268, 261-264.                                                                     | 1.3         | 12        |
| 106 | Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings. Scientific Reports, 2018, 8, 15400.                                  | 1.6         | 12        |
| 107 | ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. Materials Science and Engineering C, 2020, $117,111305$ .      | 3.8         | 12        |
| 108 | Phase transitions of V-Mo-W mixed oxides during reduction/re-oxidation cycles. Applied Catalysis A: General, 2010, 379, 155-165.                                                                                      | 2.2         | 11        |

| #   | Article                                                                                                                                                                                                                                                         | IF  | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | XPS and AES sputterâ€depth profiling at surfaces of biocompatible passivated Tiâ€based alloys: concentration quantification considering chemical effects. Surface and Interface Analysis, 2014, 46, 683-688.                                                    | 0.8 | 11        |
| 110 | Electrochemical Behavior of Microparticulate Silicon Anodes in Ether-Based Electrolytes: Why Does LiNO <sub>3</sub> Affect Negatively?. ACS Applied Energy Materials, 2019, 2, 4411-4420.                                                                       | 2.5 | 11        |
| 111 | Revisiting the Crystal Structure of BaCe <sub>0.4</sub> Y <sub>0.2</sub> O <sub>3â^Î</sub> Proton Conducting Perovskite and Its Correlation with Transport Properties. ACS Applied Energy Materials, 2020, 3, 2881-2892.                                        | 2.5 | 11        |
| 112 | Characterization of V-W and Mo-W Mixed Oxide Catalysts for the Selective Oxidation of Acrolein to Acrylic Acid. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1525-1548.                                                                                     | 1.4 | 10        |
| 113 | Interactions of Copper and Iron in Conversion Reactions of Nanosized Oxides with Large Variations in Iron-Copper Ratio. Journal of the Electrochemical Society, 2011, 158, A1383.                                                                               | 1.3 | 10        |
| 114 | Irreversible Made Reversible: Increasing the Electrochemical Capacity by Understanding the Structural Transformations of Na <sub><i>x</i></sub> Co <sub>0.5</sub> Ti <sub>0.5</sub> O <sub>2</sub> . ACS Applied Materials & Interfaces, 2018, 10, 36108-36119. | 4.0 | 10        |
| 115 | MXenes and the progress of Li–S battery development—a perspective. JPhys Energy, 2021, 3, 021002.                                                                                                                                                               | 2.3 | 10        |
| 116 | Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Materials Today Communications, 2021, 28, 102689.                                                                                  | 0.9 | 9         |
| 117 | Growth, characterization, and magnetic properties of a Li(Mn,Ni)PO4 single crystal. Journal of Crystal Growth, 2014, 386, 16-21.                                                                                                                                | 0.7 | 8         |
| 118 | Wettability and work of adhesion of liquid sulfur on carbon materials for electrical energy storage applications. Carbon, 2016, 98, 702-707.                                                                                                                    | 5.4 | 8         |
| 119 | Mechanochemical Functionalization of Carbon Black at Room Temperature. Journal of Carbon<br>Research, 2018, 4, 14.                                                                                                                                              | 1.4 | 8         |
| 120 | Thermodynamic assessment and first principle calculations of the Na Sb Sn system. Journal of Alloys and Compounds, 2017, 695, 1725-1742.                                                                                                                        | 2.8 | 7         |
| 121 | Synthetic and Catalytic Potential of Amorphous Mesoporous Aluminosilicates Prepared by Postsynthetic Aluminations of Silica in Aqueous Media. ChemCatChem, 2018, 10, 1385-1397.                                                                                 | 1.8 | 7         |
| 122 | One-Pot Synthesis of Graphene-Sulfur Composites for Li-S Batteries: Influence of Sulfur Precursors. Journal of Carbon Research, 2018, 4, 2.                                                                                                                     | 1.4 | 7         |
| 123 | MOFâ€Derived Onionâ€Like Carbon with Superior Surface Area and Porosity for High Performance<br>Lithiumâ€lon Capacitors. Batteries and Supercaps, 2022, 5, .                                                                                                    | 2.4 | 6         |
| 124 | Peculiarities of anisotropic electrical resistivity in Lu2PdSi3 single crystals. CrystEngComm, 2013, 15, 9052.                                                                                                                                                  | 1.3 | 5         |
| 125 | Amorphous Li-Al-Based Compounds: A Novel Approach for Designing High Performance Electrode Materials for Li-Ion Batteries. Inorganics, 2013, 1, 14-31.                                                                                                          | 1.2 | 5         |
| 126 | Amphiphiles with polyethyleneoxide–polyethylenecarbonate chains for hydrophilic coating of iron oxide cores, loading by Gd(III) ions and tuning R2/R1 ratio. Reactive and Functional Polymers, 2016, 99, 107-113.                                               | 2.0 | 5         |

| #   | Article                                                                                                                                                                                                                                                | IF               | CITATIONS                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 127 | Comparative study of the sustainable preparation of FeMn thin films via electrodeposition and magnetron co-sputtering. Surface and Coatings Technology, 2019, 375, 182-196.                                                                            | 2.2              | 5                        |
| 128 | TiNb <sub>2</sub> O <sub>7</sub> and VNb <sub>9</sub> O <sub>25</sub> of ReO <sub>3</sub> Type in Hybrid Mg–Li Batteries: Electrochemical and Interfacial Insights. Journal of Physical Chemistry C, 2020, 124, 25239-25248.                           | 1.5              | 5                        |
| 129 | Ordered Ti-Fe-O nanotubes as additive-free anodes for lithium ion batteries. Applied Materials Today, 2020, 20, 100676.                                                                                                                                | 2.3              | 5                        |
| 130 | Highly Efficient Multicomponent Gel Biopolymer Binder Enables Ultrafast Cycling and Applicability in Diverse Battery Formats. ACS Applied Materials & Interfaces, 2020, 12, 53827-53840.                                                               | 4.0              | 5                        |
| 131 | T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. Journal of Chemical Sciences, 2021, 133, 1.                                                                                     | 0.7              | 4                        |
| 132 | Coexistence of conversion and intercalation mechanisms in lithium ion batteries: Consequences for microstructure and interaction between the active material and electrolyte. International Journal of Materials Research, 2017, 108, 971-983.         | 0.1              | 3                        |
| 133 | A Highly Conductive Gel Polymer Electrolyte for Li–Mg Hybrid Batteries. ACS Applied Energy Materials, 2021, 4, 1906-1914.                                                                                                                              | 2.5              | 3                        |
| 134 | Synthesis of micro- and nanosheets of CrCl <sub>3</sub> â€"RuCl <sub>3</sub> solid solution by chemical vapour transport. Nanoscale, 2022, 14, 10483-10492.                                                                                            | 2.8              | 3                        |
| 135 | Unusual oxidation behavior of light metal hydride by tetrahydrofuran solvent molecules confined in ordered mesoporous carbon. Journal of Materials Research, 2014, 29, 55-63.                                                                          | 1.2              | 2                        |
| 136 | Anionic polymerization of multi-vinylferrocenes. Journal of Organometallic Chemistry, 2017, 853, 149-158.                                                                                                                                              | 0.8              | 2                        |
| 137 | Synthesis, Characterization, and Electrochemistry of Layered Chalcogenides LiCu <i>Ch</i> ( <i>Ch</i> ) Tj ETQq1                                                                                                                                       | 1 0.78431<br>1.9 | 4 <sub>.</sub> 7gBT /Ove |
| 138 | Novel Fe-0.3Cr-0.4Mo-1.5Mn–3Ni-0.6C tool steel with superior properties under quasi-static and dynamic loading. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142156.                 | 2.6              | 2                        |
| 139 | The role of electrons during the martensitic phase transformation in NiTi-based shape memory alloys. Materials Today Physics, 2022, 24, 100671.                                                                                                        | 2.9              | 2                        |
| 140 | Novel corrosionâ€resistant tool steels with superior wear properties. Advanced Engineering Materials, 0, , .                                                                                                                                           | 1.6              | 1                        |
| 141 | Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes. Inorganics, 2014, 2, 674-682.                                                                                                               | 1.2              | 0                        |
| 142 | D2 Enertrode: Production Technologies and Component Integration of Nanostructured Carbon Electrodes for Energy Technology—Functionalized Carbon Materials for Efficient Electrical Energy Supply. Advanced Engineering Materials, 2014, 16, 1196-1201. | 1.6              | 0                        |
| 143 | Reversible phase transition in precious metal-doped LaMnO3perovskites. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s187-s187.                                                                                                | 0.3              | O                        |
| 144 | Structure investigations in the V-Mo-Te-O system. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s160-s160.                                                                                                                     | 0.3              | 0                        |

| #   | Article                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Structural characterisation of lanthanum manganese perovskite catalysts by in-situ X-ray powder diffraction., 2011,, 307-312. |      | 0         |
| 146 | Upscaling sub-nano-sized silicon particles. Nature Energy, 2021, 6, 1092-1093.                                                | 19.8 | 0         |