## Shiva Khani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603652/publications.pdf Version: 2024-02-01



**SHIVA ΚΗΛΝΙ** 

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Optics<br>Communications, 2022, 505, 127534.                                                                                      | 2.1 | 37        |
| 2  | Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Scientific Reports, 2022, 12, 5246.                                                             | 3.3 | 47        |
| 3  | Fano Resonance Using Surface Plasmon Polaritons in a Nano-disk Resonator Coupled to Perpendicular<br>Waveguides for Amplitude Modulation Applications. Plasmonics, 2021, 16, 1891-1908.                             | 3.4 | 10        |
| 4  | Reconfigurable and scalable 2,4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Scientific Reports, 2021, 11, 13628.       | 3.3 | 26        |
| 5  | An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices and Microstructures, 2021, 156, 106970.                                                    | 3.1 | 56        |
| 6  | Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive<br>theoretical analysis and design guidelines. Journal of Computational Electronics, 2021, 20, 442-457.               | 2.5 | 34        |
| 7  | Compact Ultra-Wide Upper Stopband Microstrip Dual-Band BPF Using Tapered and Octagonal Loop<br>Resonators. Frequenz, 2020, 74, 61-71.                                                                               | 0.9 | 29        |
| 8  | All-Optical Plasmonic Switches Based on Asymmetric Directional Couplers Incorporating Bragg<br>Gratings. Plasmonics, 2020, 15, 869-879.                                                                             | 3.4 | 26        |
| 9  | Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions. Optics Communications, 2020, 477, 126359. | 2.1 | 28        |
| 10 | Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics and Nanostructures - Fundamentals and Applications, 2020, 40, 100802.               | 2.0 | 31        |
| 11 | Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices and Microstructures, 2020, 141, 106481.     | 3.1 | 28        |
| 12 | Design of a Single-Mode Plasmonic Bandpass Filter Using a Hexagonal Resonator Coupled to<br>Graded-Stub Waveguides. Plasmonics, 2019, 14, 53-62.                                                                    | 3.4 | 66        |
| 13 | Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog<br>Integrated Circuits and Signal Processing, 2019, 98, 367-376.                                                      | 1.4 | 43        |
| 14 | Tunable singleâ€mode bandpass filter based on metal–insulator–metal plasmonic coupled Uâ€shaped<br>cavities. IET Optoelectronics, 2019, 13, 161-171.                                                                | 3.3 | 51        |
| 15 | Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical<br>Kerr effect. Superlattices and Microstructures, 2019, 135, 106244.                                              | 3.1 | 50        |
| 16 | Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 25-34.                    | 2.7 | 45        |
| 17 | Tunable compact microstrip dualâ€band bandpass filter with tapered resonators. Microwave and Optical Technology Letters, 2018, 60, 1256-1261.                                                                       | 1.4 | 41        |
| 18 | Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Communications, 2018, 420, 147-156.                                                                                | 2.1 | 89        |

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk<br>resonators. Optical Engineering, 2018, 57, 1.          | 1.0 | 59        |
| 20 | Adjustable compact dualâ€band microstrip bandpass filter using Tâ€shaped resonators. Microwave and Optical Technology Letters, 2017, 59, 2970-2975. | 1.4 | 36        |