Pascal V Fua

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5603548/pascal-v-fua-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,256 58 139 243 h-index g-index citations papers 25,316 251 5.5 7.23 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
243	3D reconstruction of curvilinear structures with stereo matching deep convolutional neural networks <i>Ultramicroscopy</i> , 2022 , 234, 113460	3.1	1
242	GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2022 , 44, 181-195	13.3	7
241	Eigendecomposition-Free Training of Deep Networks for Linear Least-Square Problems. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 3167-3182	13.3	4
240	Deep Active Surface Models 2021 ,		2
239	Masksembles for Uncertainty Estimation 2021 ,		3
238	Wide-Depth-Range 6D Object Pose Estimation in Space 2021 ,		7
237	Drainage Canals in Southeast Asian Peatlands Increase Carbon Emissions. <i>AGU Advances</i> , 2021 , 2, e2020	љ <u>у</u> 4000	03 , 21
236	Image Matching Across Wide Baselines: From Paper to Practice. <i>International Journal of Computer Vision</i> , 2021 , 129, 517-547	10.6	59
235	Matching Seqlets: An Unsupervised Approach for Locality Preserving Sequence Matching. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 745-752	13.3	3
234	Motion Prediction Using Temporal Inception Module. Lecture Notes in Computer Science, 2021, 651-665	0.9	2
233	LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals. <i>Nature Methods</i> , 2021 , 18, 975-981	21.6	12
232	Real-time camera pose estimation for sports fields. <i>Machine Vision and Applications</i> , 2020 , 31, 1	2.8	6
231	XNect. ACM Transactions on Graphics, 2020 , 39,	7.6	73
230	Towards Reliable Evaluation of Algorithms for Road Network Reconstruction from Aerial Images. <i>Lecture Notes in Computer Science</i> , 2020 , 703-719	0.9	О
229	TopoAL: An Adversarial Learning Approach for Topology-Aware Road Segmentation. <i>Lecture Notes in Computer Science</i> , 2020 , 224-240	0.9	2
228	Estimating People Flows to Better Count Them in Crowded Scenes. <i>Lecture Notes in Computer Science</i> , 2020 , 723-740	0.9	8
227	Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data. <i>Lecture Notes in Computer Science</i> , 2020 , 299-308	0.9	13

(2018-2020)

226	Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures. <i>Medical Image Analysis</i> , 2020 , 60, 101590	15.4	7
225	Visual Correspondences for Unsupervised Domain Adaptation on Electron Microscopy Images. <i>IEEE Transactions on Medical Imaging</i> , 2020 , 39, 1256-1267	11.7	7
224	ActiveMoCap: Optimized Viewpoint Selection for Active Human Motion Capture 2020,		4
223	Shape Reconstruction by Learning Differentiable Surface Representations 2020 ,		8
222	Joint Segmentation and Path Classification of Curvilinear Structures. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , 42, 1515-1521	13.3	12
221	Geometry in active learning for binary and multi-class image segmentation. <i>Computer Vision and Image Understanding</i> , 2019 , 182, 1-16	4.3	12
220	A Performance Evaluation of Local Features for Image-Based 3D Reconstruction. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 4774-4789	8.7	32
219	Are Existing Monocular Computer Vision-Based 3D Motion Capture Approaches Ready for Deployment? A Methodological Study on the Example of Alpine Skiing. <i>Sensors</i> , 2019 , 19,	3.8	4
218	DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult. <i>ELife</i> , 2019 , 8,	8.9	62
217	Beyond Cartesian Representations for Local Descriptors 2019 ,		21
216	What Face and Body Shapes Can Tell Us About Height 2019 ,		11
215	GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping 2019 ,		49
214	2019,		76
213	2019,		16
212	Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 2019,		19
211	Eliminating Exposure Bias and Metric Mismatch in Multiple Object Tracking 2019 ,		31
210	Beyond Sharing Weights for Deep Domain Adaptation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2019 , 41, 801-814	13.3	147
209	Learning Latent Representations of 3D Human Pose with Deep Neural Networks. <i>International Journal of Computer Vision</i> , 2018 , 126, 1326-1341	10.6	36

208	Reconstructing Evolving Tree Structures in Time Lapse Sequences by Enforcing Time-Consistency. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 755-761	13.3	4
207	Robust 3D Object Tracking from Monocular Images Using Stable Parts. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1465-1479	13.3	34
206	Stereo-vision three-dimensional reconstruction of curvilinear structures imaged with a TEM. <i>Ultramicroscopy</i> , 2018 , 184, 116-124	3.1	11
205	A domain-adaptive two-stream U-Net for electron microscopy image segmentation 2018 ,		19
204	The effects of aging on neuropil structure in mouse somatosensory cortex-A 3D electron microscopy analysis of layer 1. <i>PLoS ONE</i> , 2018 , 13, e0198131	3.7	26
203	Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation. <i>Lecture Notes in Computer Science</i> , 2018 , 765-782	0.9	54
202	WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection 2018,		31
201	Learning to Find Good Correspondences 2018,		137
200	Beyond the Pixel-Wise Loss for Topology-Aware Delineation 2018,		69
199	Residual Parameter Transfer for Deep Domain Adaptation 2018,		24
198	Learning Monocular 3D Human Pose Estimation from Multi-view Images 2018,		90
197	Every Smile is Unique: Landmark-Guided Diverse Smile Generation 2018,		22
196	Learning to Reconstruct Texture-Less Deformable Surfaces from a Single View 2018,		9
195	Eigendecomposition-Free Training of Deep Networks with Zero Eigenvalue-Based Losses. <i>Lecture Notes in Computer Science</i> , 2018 , 792-807	0.9	12
194	Learning to Segment 3D Linear Structures Using Only 2D Annotations. <i>Lecture Notes in Computer Science</i> , 2018 , 283-291	0.9	3
193	Network Flow Integer Programming to Track Elliptical Cells in Time-Lapse Sequences. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 942-951	11.7	39
192	Computer Vision Techniques Applied to the Reconstruction of the 3-D Structure Dislocations. <i>Microscopy and Microanalysis</i> , 2017 , 23, 102-103	0.5	
191	Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures. <i>Scientific Reports</i> , 2017 , 7, 10630	4.9	13

190	Flight Dynamics-Based Recovery of a UAV Trajectory Using Ground Cameras 2017,		14
189	Non-Markovian Globally Consistent Multi-object Tracking 2017 ,		45
188	Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation 2017,		96
187	Multi-modal Mean-Fields via Cardinality-Based Clamping 2017 ,		2
186	Monocular 3D Human Pose Estimation in the Wild Using Improved CNN Supervision 2017,		240
185	Active Learning and Proofreading for Delineation of Curvilinear Structures. <i>Lecture Notes in Computer Science</i> , 2017 , 165-173	0.9	4
184	Simultaneous Recognition and Pose Estimation of Instruments in Minimally Invasive Surgery. <i>Lecture Notes in Computer Science</i> , 2017 , 505-513	0.9	32
183	Parsing human skeletons in an operating room. <i>Machine Vision and Applications</i> , 2016 , 27, 1035-1046	2.8	21
182	LIFT: Learned Invariant Feature Transform. Lecture Notes in Computer Science, 2016, 467-483	0.9	271
181	Principled Parallel Mean-Field Inference for Discrete Random Fields 2016 ,		10
181	Principled Parallel Mean-Field Inference for Discrete Random Fields 2016 , Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41	13.3	10
	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> ,	13.3 7.3	_
180	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho		64
180 179	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling. <i>Journal of Cell Biology</i> , 2016 , 212, 91-111 Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming. <i>IEEE</i>	7.3	64
180 179 178	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling. <i>Journal of Cell Biology</i> , 2016 , 212, 91-111 Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 2515-2530 Template-Based Monocular 3D Shape Recovery Using Laplacian Meshes. <i>IEEE Transactions on</i>	7.3	64 13 32
180 179 178	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling. <i>Journal of Cell Biology</i> , 2016 , 212, 91-111 Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 2515-2530 Template-Based Monocular 3D Shape Recovery Using Laplacian Meshes. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 172-87 Tracking Interacting Objects Using Intertwined Flows. <i>IEEE Transactions on Pattern Analysis and</i>	7·3 13·3	64 13 32 31
180 179 178 177	Multiscale Centerline Detection. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 1327-41 Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling. <i>Journal of Cell Biology</i> , 2016 , 212, 91-111 Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 2515-2530 Template-Based Monocular 3D Shape Recovery Using Laplacian Meshes. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 172-87 Tracking Interacting Objects Using Intertwined Flows. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 2312-2326 Scalable Unsupervised Domain Adaptation for Electron Microscopy. <i>Lecture Notes in Computer</i>	7·3 13·3 13·3	64 13 32 31 79

172	What Players do with the Ball: A Physically Constrained Interaction Modeling 2016,		41
171	Analyzing Volleyball Match Data from the 2014 World Championships Using Machine Learning Techniques 2016 ,		5
170	Do We Need Binary Features for 3D Reconstruction? 2016 ,		5
169	Learning to Assign Orientations to Feature Points 2016 ,		43
168	Vision-based Unmanned Aerial Vehicle detection and tracking for sense and avoid systems 2016,		27
167	Learning to Match Aerial Images with Deep Attentive Architectures 2016 ,		37
166	Measuring the accuracy of softball impact simulations. Sports Engineering, 2016, 19, 265-272	1.4	2
165	Simultaneous segmentation and anatomical labeling of the cerebral vasculature. <i>Medical Image Analysis</i> , 2016 , 32, 201-15	15.4	21
164	On rendering synthetic images for training an object detector. <i>Computer Vision and Image Understanding</i> , 2015 , 137, 24-37	4.3	42
163	NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. <i>Neuroinformatics</i> , 2015 , 13, 83-92	3.2	39
162	Domain adaptation for microscopy imaging. IEEE Transactions on Medical Imaging, 2015, 34, 1125-39	11.7	14
161	Live texturing of augmented reality characters from colored drawings. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2015 , 21, 1201-10	4	28
160	Learning Separable Filters. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2015 , 37, 94-1	06 .3	48
159	Introducing Geometry in Active Learning for Image Segmentation 2015,		20
158	Modeling brain circuitry over a wide range of scales. Frontiers in Neuroanatomy, 2015, 9, 42	3.6	5
157	Learning structured models for segmentation of 2-D and 3-D imagery. <i>IEEE Transactions on Medical Imaging</i> , 2015 , 34, 1096-110	11.7	23
156	Projection onto the Manifold of Elongated Structures for Accurate Extraction 2015,		14
155	Dense Image Registration and Deformable Surface Reconstruction in Presence of Occlusions and Minimal Texture 2015 ,		17

(2014-2015)

154	A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images 2015 ,		34
153	TILDE: A Temporally Invariant Learned DEtector 2015 ,		115
152	Discriminative Learning of Deep Convolutional Feature Point Descriptors 2015 ,		341
151	Hot or Not: Exploring Correlations between Appearance and Temperature 2015,		10
150	Probability occupancy maps for occluded depth images 2015,		20
149	Flying objects detection from a single moving camera 2015 ,		55
148	Non-Rigid Graph Registration Using Active Testing Search. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2015 , 37, 625-38	13.3	29
147	Multiple Human Pose Estimation with Temporally Consistent 3D Pictorial Structures. <i>Lecture Notes in Computer Science</i> , 2015 , 742-754	0.9	11
146	Refining Mitochondria Segmentation in Electron Microscopy Imagery with Active Surfaces. <i>Lecture Notes in Computer Science</i> , 2015 , 367-379	0.9	6
145	Receptive fields selection for binary feature description. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 2583-95	8.7	60
144	Multi-Commodity Network Flow for Tracking Multiple People. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2014 , 36, 1614-27	13.3	93
143	Multiscale Centerline Detection by Learning a Scale-Space Distance Transform 2014 ,		59
142	Correlative in vivo 2-photon imaging and focused ion beam scanning electron microscopy: 3D analysis of neuronal ultrastructure. <i>Methods in Cell Biology</i> , 2014 , 124, 339-61	1.8	18
141	Dendritic tree extraction from noisy maximum intensity projection images in C. elegans. <i>BioMedical Engineering OnLine</i> , 2014 , 13, 74	4.1	5
140	Reconstructing Evolving Tree Structures in Time Lapse Sequences 2014,		4
139	Caenorhabditis elegans segmentation using texture-based models for motility phenotyping. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 2278-89	5	6
138	Re-identification for Improved People Tracking 2014 , 309-330		6
137	On the relevance of sparsity for image classification. <i>Computer Vision and Image Understanding</i> , 2014 , 125, 115-127	4.3	13

136	Take your eyes off the ball: Improving ball-tracking by focusing on team play. <i>Computer Vision and Image Understanding</i> , 2014 , 119, 102-115	32
135	Real-time landing place assessment in man-made environments. <i>Machine Vision and Applications</i> , 2014 , 25, 211-227	9
134	Simultaneous segmentation and anatomical labeling of the cerebral vasculature. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 307-14	5
133	Exploiting enclosing membranes and contextual cues for mitochondria segmentation. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 65-72	11
132	Fast part-based classification for instrument detection in minimally invasive surgery. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 692-9	32
131	Tracking Interacting Objects Optimally Using Integer Programming. <i>Lecture Notes in Computer Science</i> , 2014 , 17-32	35
130	Free-Shape Polygonal Object Localization. <i>Lecture Notes in Computer Science</i> , 2014 , 317-332 0.9	12
129	Stochastic exploration of ambiguities for nonrigid shape recovery. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2013 , 35, 463-75	3 13
128	Detecting Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-directional Oriented Flux 2013 ,	18
127	TPAMI CVPR Special Section. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2013 , 35, 2819-2820	;
126	Automated quantification of morphodynamics for high-throughput live cell time-lapse datasets 2013 ,	3
125	Learning Separable Filters 2013 ,	89
124	Fast Object Detection with Entropy-Driven Evaluation 2013,	14
123	Reconstructing Loopy Curvilinear Structures Using Integer Programming 2013,	45
122	Learning for Structured Prediction Using Approximate Subgradient Descent with Working Sets 2013 ,	37
121	Boosting Binary Keypoint Descriptors 2013 ,	105
120	Learning context cues for synapse segmentation. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 1864-7 1 1.	7 36
119	Active testing search for point cloud matching. <i>Lecture Notes in Computer Science</i> , 2013 , 23, 572-83 0.9	3

118	Flash scanning electron microscopy. Lecture Notes in Computer Science, 2013, 16, 413-20	0.9	2
117	Supervised feature learning for curvilinear structure segmentation. <i>Lecture Notes in Computer Science</i> , 2013 , 16, 526-33	0.9	74
116	Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. <i>IEEE Transactions on Medical Imaging</i> , 2012 , 31, 474-86	11.7	149
115	LDAHash: Improved Matching with Smaller Descriptors. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 66-78	13.3	407
114	A real-time deformable detector. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 225-39	13.3	31
113	Monocular 3D reconstruction of locally textured surfaces. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 1118-30	13.3	19
112	Gradient response maps for real-time detection of textureless objects. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 876-88	13.3	280
111	BRIEF: Computing a Local Binary Descriptor Very Fast. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 1281-98	13.3	465
110	Hybrid Algorithms for the Minimum-Weight Rooted Arborescence Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 61-72	0.9	1
109	Efficient large-scale multi-view stereo for ultra high-resolution image sets. <i>Machine Vision and Applications</i> , 2012 , 23, 903-920	2.8	130
108	Automated reconstruction of tree structures using path classifiers and Mixed Integer Programming 2012 ,		49
107	SLIC superpixels compared to state-of-the-art superpixel methods. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 2274-82	13.3	4964
106	Thick boundaries in binary space and their influence on nearest-neighbor search. <i>Pattern Recognition Letters</i> , 2012 , 33, 2173-2180	4.7	20
105	Robust elastic 2D/3D geometric graph matching 2012 ,		5
104	A constrained latent variable model 2012 ,		50
103	Structured Image Segmentation Using Kernelized Features. <i>Lecture Notes in Computer Science</i> , 2012 , 400-413	0.9	29
102	Robust non-rigid registration of 2D and 3D graphs 2012 ,		15
101	Learning context cues for synapse segmentation in EM volumes. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 585-92	0.9	19

100	Data-driven visual tracking in retinal microsurgery. Lecture Notes in Computer Science, 2012, 15, 568-75	0.9	32
99	Laplacian Meshes for Monocular 3D Shape Recovery. <i>Lecture Notes in Computer Science</i> , 2012 , 412-425	0.9	26
98	Worldwide Pose Estimation Using 3D Point Clouds. Lecture Notes in Computer Science, 2012, 15-29	0.9	103
97	Efficient scanning for EM based target localization. Lecture Notes in Computer Science, 2012, 15, 337-44	0.9	1
96	Are spatial and global constraints really necessary for segmentation? 2011,		33
95	Linear local models for monocular reconstruction of deformable surfaces. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2011 , 33, 931-44	13.3	77
94	Multiple Object Tracking Using K-Shortest Paths Optimization. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2011 , 33, 1806-19	13.3	636
93	Learning Real-Time Perspective Patch Rectification. <i>International Journal of Computer Vision</i> , 2011 , 91, 107-130	10.6	19
92	Real-time vehicle tracking for driving assistance. <i>Machine Vision and Applications</i> , 2011 , 22, 439-448	2.8	27
91	Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. <i>Neuroinformatics</i> , 2011 , 9, 279-302	3.2	95
90	2011,		2
89	Tracking multiple people under global appearance constraints 2011,		90
88	Spatio-chromatic decorrelation by shift-invariant filtering 2011 ,		3
87	Conditional Random Fields for multi-camera object detection 2011 ,		15
86	Turning Augmented Reality into a media: Design exploration to build a dedicated visual language 2011 ,		1
85	Long Term Real Trajectory Reuse through Region Goal Satisfaction. <i>Lecture Notes in Computer Science</i> , 2011 , 412-423	0.9	4
84	View-based Maps. International Journal of Robotics Research, 2010, 29, 941-957	5.7	122
83	Simultaneous point matching and 3D deformable surface reconstruction 2010 ,		19

82	Pareto-optimal dictionaries for signatures 2010 ,		4
81	Making Action Recognition Robust to Occlusions and Viewpoint Changes. <i>Lecture Notes in Computer Science</i> , 2010 , 635-648	0.9	85
80	Simultaneous pose, correspondence and non-rigid shape 2010 ,		17
79	Dynamic and scalable large scale image reconstruction 2010 ,		55
78	Delineating trees in noisy 2D images and 3D image-stacks 2010 ,		24
77	Dominant orientation templates for real-time detection of texture-less objects 2010,		118
76	Combining Geometric and Appearance Priors for Robust Homography Estimation. <i>Lecture Notes in Computer Science</i> , 2010 , 58-72	0.9	15
75	Deformable Surface 3D Reconstruction from Monocular Images. <i>Synthesis Lectures on Computer Vision</i> , 2010 , 2, 1-113	1	20
74	BRIEF: Binary Robust Independent Elementary Features. Lecture Notes in Computer Science, 2010, 778-7	'92 9	985
73	Fast keypoint recognition using random ferns. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2010 , 32, 448-61	13.3	367
72	From canonical poses to 3D motion capture using a single camera. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2010 , 32, 1165-81	13.3	17
71	DAISY: an efficient dense descriptor applied to wide-baseline stereo. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2010 , 32, 815-30	13.3	842
70	Exploring Ambiguities for Monocular Non-rigid Shape Estimation. <i>Lecture Notes in Computer Science</i> , 2010 , 370-383	0.9	10
69	Reconstructing geometrically consistent tree structures from noisy images. <i>Lecture Notes in Computer Science</i> , 2010 , 13, 291-9	0.9	4
68	A fully automated approach to segmentation of irregularly shaped cellular structures in EM images. <i>Lecture Notes in Computer Science</i> , 2010 , 13, 463-71	0.9	44
67	Pose estimation for category specific multiview object localization 2009,		135
66	Learning rotational features for filament detection 2009,		14
65	Template-free monocular reconstruction of deformable surfaces 2009 ,		58

64	Capturing 3D stretchable surfaces from single images in closed form 2009 ,		35
63	Image summaries using database saliency 2009 ,		2
62	Souvenirs du monde des montagnes 2009 ,		3
61	EPnP: An Accurate O(n) Solution to the PnP Problem. <i>International Journal of Computer Vision</i> , 2009 , 81, 155-166	10.6	1296
60	Real-time learning of accurate patch rectification 2009,		15
59	Compact signatures for high-speed interest point description and matching 2009,		27
58	Multiple object tracking using flow linear programming 2009,		71
57	Classification-based probabilistic modeling of texture transition for fast line search tracking and delineation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2009 , 31, 570-6	13.3	4
56	Souvenirs du monde des montagnes. <i>Leonardo</i> , 2009 , 42, 350-355	0.1	3
55	Steerable features for statistical 3D dendrite detection. <i>Lecture Notes in Computer Science</i> , 2009 , 12, 625-32	0.9	22
54	Real-time learning of accurate patch rectification 2009,		3
53	Capturing 3D stretchable surfaces from single images in closed form 2009 ,		4
52	Training for Task Specific Keypoint Detection. Lecture Notes in Computer Science, 2009, 151-160	0.9	14
51	Multicamera people tracking with a probabilistic occupancy map. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2008 , 30, 267-82	13.3	468
50	The haunted book 2008 ,		25
49	A fast local descriptor for dense matching 2008 ,		264
48	Online learning of patch perspective rectification for efficient object detection 2008,		24
47	3D pose refinement from reflections 2008 ,		12

(2007-2008)

46	Closed-Form Solution to Non-rigid 3D Surface Registration. <i>Lecture Notes in Computer Science</i> , 2008 , 581-594	0.9	35
45	Local deformation models for monocular 3D shape recovery 2008 ,		60
44	Fast Non-Rigid Surface Detection, Registration and Realistic Augmentation. <i>International Journal of Computer Vision</i> , 2008 , 76, 109-122	10.6	119
43	Retrieving multiple light sources in the presence of specular reflections and texture. <i>Computer Vision and Image Understanding</i> , 2008 , 111, 207-218	4.3	7
42	Keypoint Signatures for Fast Learning and Recognition. <i>Lecture Notes in Computer Science</i> , 2008 , 58-71	0.9	23
41	Pose Priors for Simultaneously Solving Alignment and Correspondence. <i>Lecture Notes in Computer Science</i> , 2008 , 405-418	0.9	26
40	Multi-camera Tracking and Atypical Motion Detection with Behavioral Maps. <i>Lecture Notes in Computer Science</i> , 2008 , 112-125	0.9	19
39	Linking Pose and Motion. Lecture Notes in Computer Science, 2008, 200-213	0.9	3
38	Automated Delineation of Dendritic Networks in Noisy Image Stacks. <i>Lecture Notes in Computer Science</i> , 2008 , 214-227	0.9	5
37	Non-Linear Beam Model for Tracking Large Deformations 2007,		8
36	Fast Keypoint Recognition in Ten Lines of Code 2007 ,		211
35	Implicit Meshes for Effective Silhouette Handling. <i>International Journal of Computer Vision</i> , 2007 , 72, 159-178	10.6	16
34	Deformable Surface Tracking Ambiguities 2007 ,		29
33	Accurate Non-Iterative ?(?) Solution to the P?P Problem 2007,		133
32	Convex Optimization for Deformable Surface 3-D Tracking 2007 ,		67
31	Surface deformation models for nonrigid 3D shape recovery. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2007 , 29, 1481-7	13.3	89
30	Bridging the Gap between Detection and Tracking for 3D Monocular Video-Based Motion Capture 2007 ,		13
29	Retexturing in the Presence of Complex Illumination and Occlusions 2007,		10

28	Vision Based 3D Tracking and Pose Estimation for Mixed Reality 2007 , 1-22		3
27	Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors. <i>IEEE Transactions on Biomedical Engineering</i> , 2006 , 53, 1385-93	5	131
26	Feature Harvesting for Tracking-by-Detection. Lecture Notes in Computer Science, 2006, 592-605	0.9	19
25	An all-in-one solution to geometric and photometric calibration 2006,		17
24	Keypoint recognition using randomized trees. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2006 , 28, 1465-79	13.3	469
23	Implicit meshes for surface reconstruction. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2006 , 28, 328-33	13.3	20
22	Body Cloning and Body Motion Capture 2006 , 52-74		1
21	Temporal motion models for monocular and multiview 3D human body tracking. <i>Computer Vision and Image Understanding</i> , 2006 , 104, 157-177	4.3	49
20	An Investigation of Model Bias in 3D Face Tracking. Lecture Notes in Computer Science, 2005, 125-139	0.9	6
19	Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. <i>Foundations and Trends in Computer Graphics and Vision</i> , 2005 , 1, 1-89	12	369
	Compacer Graphics and Vision, 2005, 1, 1 05		
18	Style-Based Motion Synthesis (Computer Graphics Forum, 2004, 23, 799-812)	2.4	52
18		2.4	52
	Style-Based Motion Synthesis[]Computer Graphics Forum, 2004, 23, 799-812 Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern		
17	Style-Based Motion Synthesis (Computer Graphics Forum, 2004, 23, 799-812) Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 1385-91 3D Human Body Tracking Using Deterministic Temporal Motion Models. Lecture Notes in Computer	13.3	200
17 16	Style-Based Motion Synthesis (Computer Graphics Forum, 2004, 23, 799-812) Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 1385-91 3D Human Body Tracking Using Deterministic Temporal Motion Models. Lecture Notes in Computer Science, 2004, 92-106 Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data. Lecture Notes	0.9	200
17 16	Style-Based Motion Synthesis (Computer Graphics Forum, 2004, 23, 799-812 Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 1385-91 3D Human Body Tracking Using Deterministic Temporal Motion Models. Lecture Notes in Computer Science, 2004, 92-106 Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data. Lecture Notes in Computer Science, 2002, 704-717 Tracking and Modeling People in Video Sequences. Computer Vision and Image Understanding, 2001,	0.9	200 27 7
17 16 15	Style-Based Motion Synthesis (Computer Graphics Forum, 2004, 23, 799-812 Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 1385-91 3D Human Body Tracking Using Deterministic Temporal Motion Models. Lecture Notes in Computer Science, 2004, 92-106 Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data. Lecture Notes in Computer Science, 2002, 704-717 Tracking and Modeling People in Video Sequences. Computer Vision and Image Understanding, 2001, 81, 285-302 Using skeleton-based tracking to increase the reliability of optical motion capture. Human	0.9	20027773

LIST OF PUBLICATIONS

Using Differential Constraints to Generate a 3D Face Model from Stereo **1998**, 556-567

9	Automatic extraction of generic house roofs from high resolution aerial imagery. <i>Lecture Notes in Computer Science</i> , 1996 , 83-96	0.9	14
8	A parallel stereo algorithm that produces dense depth maps and preserves image features. <i>Machine Vision and Applications</i> , 1993 , 6, 35-49	2.8	227
7	Computational strategies for object recognition. ACM Computing Surveys, 1992, 24, 5-62	13.4	159
6	Model driven edge detection. <i>Machine Vision and Applications</i> , 1990 , 3, 45-56	2.8	91
5	Resegmentation using generic shape: Locating general cultural objects. <i>Pattern Recognition Letters</i> , 1987 , 5, 243-252	4.7	17
4	Learning rotational features for filament detection		4
3	Pose estimation for category specific multiview object localization		15
2	Reconstructing sharply folding surfaces: A convex formulation		8
1	LiftPose3D, a deep learning-based approach for transforming 2D to 3D pose in laboratory animals		5