
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5603538/publications.pdf Version: 2024-02-01



KEISUKE ITO

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Paul S. Frenette (1965–2021). FASEB BioAdvances, 2022, 4, 5-8.                                                                                                                                                                                                       | 1.3 | Ο         |
| 2  | Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell, 2022, 29, 131-148.e10.                                                                                               | 5.2 | 40        |
| 3  | CD36-Mediated Fatty Acid Oxidation in Hematopoietic Stem Cells Is a Novel Mechanism of Emergency<br>Hematopoiesis in Response to Infection. Immunometabolism, 2022, 4, .                                                                                             | 0.7 | 4         |
| 4  | <i>NPM1</i> ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by <i>p53</i> loss. EMBO Reports, 2022, 23, e54262.                                                                                                          | 2.0 | 12        |
| 5  | Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis. Science Advances, 2022, 8, eabm3470.                                                                                               | 4.7 | 13        |
| 6  | Metabolic Regulation of Hematopoietic Stem Cells. HemaSphere, 2022, 6, e740.                                                                                                                                                                                         | 1.2 | 15        |
| 7  | Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports,<br>2022, 17, 1509-1535.                                                                                                                                            | 2.3 | 8         |
| 8  | Dipeptidyl peptidase IV inhibitory dipeptides contained in hydrolysates of green tea grounds. Food<br>Science and Technology Research, 2021, 27, 329-334.                                                                                                            | 0.3 | 0         |
| 9  | Of Nestin and Niches: Paul S. Frenette, MD (1965-2021). , 2021, 18, .                                                                                                                                                                                                |     | Ο         |
| 10 | A new screening method for identifying chemosensory receptors responding to agonist. Bioscience,<br>Biotechnology and Biochemistry, 2021, 85, 1521-1525.                                                                                                             | 0.6 | 0         |
| 11 | Trp-Trp acts as a multifunctional blocker for human bitter taste receptors, hTAS2R14, hTAS2R16, hTAS2R43, and hTAS2R46. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1526-1529.                                                                             | 0.6 | 3         |
| 12 | 1′-Acetoxychavicol acetate, a potent transient receptor potential ankyrin 1 agonist derived from Thai ginger, prevents visceral fat accumulation in mice fed with a high-fat and high-sucrose diet. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2191-2194. | 0.6 | 0         |
| 13 | Actinomycin D Targets NPM1c-Primed Mitochondria to Restore PML-Driven Senescence in AML Therapy.<br>Cancer Discovery, 2021, 11, 3198-3213.                                                                                                                           | 7.7 | 38        |
| 14 | Intravital fluorescence microscopy with negative contrast. PLoS ONE, 2021, 16, e0255204.                                                                                                                                                                             | 1.1 | 6         |
| 15 | Bitterness-masking peptides for epigallocatechin gallate identified through peptide array analysis.<br>Food Science and Technology Research, 2021, 27, 221-228.                                                                                                      | 0.3 | 5         |
| 16 | Mitochondrial Contributions to Hematopoietic Stem Cell Aging. International Journal of Molecular<br>Sciences, 2021, 22, 11117.                                                                                                                                       | 1.8 | 17        |
| 17 | Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid<br>Leukemia. Cancers, 2021, 13, 5822.                                                                                                                                 | 1.7 | 9         |
| 18 | Hematopoietic Stem Cell Metabolism during Development and Aging. Developmental Cell, 2020, 54,<br>239-255.                                                                                                                                                           | 3.1 | 124       |

| #  | Article                                                                                                                                                                                                                        | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Improving the Accuracy of Flow Cytometric Assessment of Mitochondrial Membrane Potential in<br>Hematopoietic Stem and Progenitor Cells Through the Inhibition of Efflux Pumps. Journal of<br>Visualized Experiments, 2019, , . | 0.2 | 9         |
| 20 | Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell<br>Homeostasis. Cell Reports, 2019, 28, 2480-2490.e4.                                                                             | 2.9 | 66        |
| 21 | Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Research, 2019, 40, 101573.                                                           | 0.3 | 40        |
| 22 | Mitochondrial Stress-Initiated Aberrant Activation of the NLRP3 Inflammasome Regulates the Functional Deterioration of Hematopoietic Stem Cell Aging. Cell Reports, 2019, 26, 945-954.e4.                                      | 2.9 | 98        |
| 23 | microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood<br>Advances, 2019, 3, 33-46.                                                                                                  | 2.5 | 14        |
| 24 | Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita.<br>Nature Genetics, 2019, 51, 1518-1529.                                                                                       | 9.4 | 84        |
| 25 | Metabolism as master of hematopoietic stem cell fate. International Journal of Hematology, 2019, 109, 18-27.                                                                                                                   | 0.7 | 71        |
| 26 | Electron Transport Chain Complex II Sustains High Mitochondrial Membrane Potential in<br>Hematopoietic Stem and Progenitor Cells. Blood, 2019, 134, 1188-1188.                                                                 | 0.6 | 0         |
| 27 | A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nature<br>Communications, 2018, 9, 66.                                                                                                       | 5.8 | 25        |
| 28 | Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment.<br>Experimental Hematology, 2018, 68, 30-37.e1.                                                                                  | 0.2 | 46        |
| 29 | Hematopoietic stem cell fate through metabolic control. Experimental Hematology, 2018, 64, 1-11.                                                                                                                               | 0.2 | 68        |
| 30 | Insights Into the Metabolic Control of Hematopoietic Stem Cell Fate. Experimental Hematology, 2018,<br>64, S35.                                                                                                                | 0.2 | 1         |
| 31 | Image-guided transplantation of single cells in the bone marrow of live animals. Scientific Reports, 2017, 7, 3875.                                                                                                            | 1.6 | 15        |
| 32 | A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and<br>Hematologic Disease. International Review of Cell and Molecular Biology, 2017, 334, 99-175.                                       | 1.6 | 58        |
| 33 | DNMT3A and TET2 in the Pre-Leukemic Phase of Hematopoietic Disorders. Frontiers in Oncology, 2016, 6, 187.                                                                                                                     | 1.3 | 38        |
| 34 | Self-renewal of a purified <i>Tie2</i> <sup>+</sup> hematopoietic stem cell population relies on mitochondrial clearance. Science, 2016, 354, 1156-1160.                                                                       | 6.0 | 251       |
| 35 | Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal. Annual Review of Cell and Developmental Biology, 2016, 32, 399-409.                                                                                   | 4.0 | 86        |
| 36 | HSC Contribution in Making Steady-State Blood. Immunity, 2016, 45, 464-466.                                                                                                                                                    | 6.6 | 7         |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Resistance in the Ribosome: RUNX1, pre-LSCs, and HSPCs. Cell Stem Cell, 2015, 17, 129-131.                                                                                                             | 5.2  | 0         |
| 38 | DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in<br>Leukemia. International Journal of Molecular Sciences, 2015, 16, 6183-6201.                      | 1.8  | 26        |
| 39 | Mitochondrial control of hematopoietic stem cell balance and hematopoiesis. Frontiers in Biology, 2015, 10, 117-124.                                                                                   | 0.7  | 9         |
| 40 | DNA damage response, redox status and hematopoiesis. Blood Cells, Molecules, and Diseases, 2014, 52,<br>12-18.                                                                                         | 0.6  | 17        |
| 41 | Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular<br>Cell Biology, 2014, 15, 243-256.                                                                   | 16.1 | 848       |
| 42 | The role of PML in hematopoietic and leukemic stem cell maintenance. International Journal of<br>Hematology, 2014, 100, 18-26.                                                                         | 0.7  | 13        |
| 43 | Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein<br>Function. Cell, 2014, 157, 595-610.                                                                       | 13.5 | 235       |
| 44 | DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.                                                                                           | 13.7 | 174       |
| 45 | The Oncogenic MicroRNA miR-22 Targets the TET2 Tumor Suppressor to Promote Hematopoietic Stem Cell Self-Renewal and Transformation. Cell Stem Cell, 2013, 13, 87-101.                                  | 5.2  | 288       |
| 46 | Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.                                                                                                            | 13.7 | 1,002     |
| 47 | Newly Identified Roles of PML in Stem Cell Biology. Frontiers in Oncology, 2013, 3, 50.                                                                                                                | 1.3  | 5         |
| 48 | A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature<br>Medicine, 2012, 18, 1350-1358.                                                                  | 15.2 | 612       |
| 49 | A metabolic prosurvival role for PML in breast cancer. Journal of Clinical Investigation, 2012, 122, 3088-3100.                                                                                        | 3.9  | 220       |
| 50 | A PML–PPAR-δ Pathway for Fatty Acid Oxidation Regulates Hematopoietic Stem Cell Maintenance<br>Through the Control of Asymmetric Division Blood, 2012, 120, 2327-2327.                                 | 0.6  | 5         |
| 51 | Analysis of the interaction of food components with model lingual epithelial cells: the case of sweet proteins. Flavour and Fragrance Journal, 2011, 26, 274-278.                                      | 1.2  | 8         |
| 52 | Targeting Acute Myeloid Leukemia Stem Cells by MUC1-C Subunit Inhibition. Blood, 2010, 116, 848-848.                                                                                                   | 0.6  | 1         |
| 53 | The Role of Nucleophosmin In Hematopoietic Stem Cells and the Pathogenesis of Myelodysplastic Syndrome. Blood, 2010, 116, 95-95.                                                                       | 0.6  | 5         |
| 54 | A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Current Opinion in Genetics and Development, 2009, 19, 51-59. | 1.5  | 47        |

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 2008, 453, 1072-1078.                                                                                   | 13.7 | 517       |
| 56 | Regulation of Reactive Oxygen Species by <i>Atm</i> Is Essential for Proper Response to DNA<br>Double-Strand Breaks in Lymphocytes. Journal of Immunology, 2007, 178, 103-110. | 0.4  | 109       |
| 57 | Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool. Cell Stem Cell, 2007, 1, 101-112.                                                                     | 5.2  | 780       |
| 58 | Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature<br>Medicine, 2006, 12, 446-451.                                         | 15.2 | 1,196     |
| 59 | Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells.<br>Nature, 2004, 431, 997-1002.                                               | 13.7 | 1,084     |
| 60 | Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche.<br>Cell, 2004, 118, 149-161.                                              | 13.5 | 1,753     |